
Springer Theses
Recognizing Outstanding Ph.D. Research

Fluctuations and Non-
Equilibrium Phenomena 
in Strongly-Correlated
Ultracold Atoms

Kazuma Nagao



Springer Theses

Recognizing Outstanding Ph.D. Research



Aims and Scope

The series “Springer Theses” brings together a selection of the very best Ph.D.
theses from around the world and across the physical sciences. Nominated and
endorsed by two recognized specialists, each published volume has been selected
for its scientific excellence and the high impact of its contents for the pertinent field
of research. For greater accessibility to non-specialists, the published versions
include an extended introduction, as well as a foreword by the student’s supervisor
explaining the special relevance of the work for the field. As a whole, the series will
provide a valuable resource both for newcomers to the research fields described,
and for other scientists seeking detailed background information on special
questions. Finally, it provides an accredited documentation of the valuable
contributions made by today’s younger generation of scientists.

Theses are accepted into the series by invited nomination only
and must fulfill all of the following criteria

• They must be written in good English.
• The topic should fall within the confines of Chemistry, Physics, Earth Sciences,

Engineering and related interdisciplinary fields such as Materials, Nanoscience,
Chemical Engineering, Complex Systems and Biophysics.

• The work reported in the thesis must represent a significant scientific advance.
• If the thesis includes previously published material, permission to reproduce this

must be gained from the respective copyright holder.
• They must have been examined and passed during the 12 months prior to

nomination.
• Each thesis should include a foreword by the supervisor outlining the signifi-

cance of its content.
• The theses should have a clearly defined structure including an introduction

accessible to scientists not expert in that particular field.

More information about this series at http://www.springer.com/series/8790

http://www.springer.com/series/8790


Kazuma Nagao

Fluctuations
and Non-Equilibrium
Phenomena
in Strongly-Correlated
Ultracold Atoms
Doctoral Thesis accepted by
Kyoto University, Sakyo-ku, Kyoto

123



Author
Dr. Kazuma Nagao
Institute for Laser Physics and Center
for Optical Quantum Technologies
University of Hamburg
Hamburg, Germany

Supervisors
Prof. Keisuke Totsuka
Yukawa Institute for Theoretical Physics
Kyoto University
Sakyo-ku, Kyoto, Japan

Prof. Ippei Danshita
Department of Physics
Kindai University
Osaka, Japan

ISSN 2190-5053 ISSN 2190-5061 (electronic)
Springer Theses
ISBN 978-981-15-7170-1 ISBN 978-981-15-7171-8 (eBook)
https://doi.org/10.1007/978-981-15-7171-8

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Singapore Pte Ltd. 2020
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-15-7171-8


To my parents.



Supervisor’s Foreword I

High controllability and cleanness of ultracold gases pave a way to experimentally
observing many interesting condensed-matter phenomena which are hard to
observe in other (say, solid-state) settings. One possible application, whose original
idea may be traced back to the Feynman’s proposal in 1982, is to take this
advantage of cold-gas systems to simulate quantum many-body systems with
well-controlled experimental systems instead of using classical computers which
are suffering from various problems. Armed with state-of-the-art read-out tech-
niques such as quantum-gas microscope, this idea of using cold gases as “quantum
simulators” for strongly-correlated many-body systems, which are hard to tackle
with traditional theoretical approaches, has been successfully applied to various
equilibrium phenomena, e.g., superfluid-insulator transitions in correlated Bose
systems, antiferromagnetism in the two-dimensional Hubbard model, etc. On the
other hand, quantum simulation of out-of-equilibrium problems is far less devel-
oped mainly due to the lack of precise and reliable theoretical results to compare
with experiments. In this Thesis, Dr. Kazuma Nagao tries to fill the gap between
theory and experiments in quantum simulation of quantum dynamics.

Among many challenging problems in this research area, Kazuma addresses two
important questions in his Thesis. The first is related to table-top simulation of the
Higgs (amplitude) mode with ultra-cold bosons in an optical lattice. Recent theo-
retical studies showed that quantum/thermal fluctuations and the existence of
non-uniform trap potentials obscure the Higgs mode in two dimensions, thereby
hindering the observation of the sharp peak in experiments. To explore the possi-
bility of observing clear experimental signatures of the Higgs mode in higher
dimensions, Kazuma investigates in Chap. 4 a particular response function of a
three-dimensional Bose system to obtain positive answers that the Higgs mode
survives fluctuations and can be seen in experiments even in the presence of
inhomogeneity as far as we carefully perturb the system. I believe that these
observations will motivate further “Higgs hunting” experiments in higher-
dimensional Bose systems in the near future.
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The second project is to develop a reliable theoretical tool that can be used to
simulate non-equilibrium phenomena in higher-dimensional correlated many-body
systems. Except for one-dimensional systems in which the time-dependent
density-matrix renormalization group method is applicable, there are only a lim-
ited number of numerical tools available to reliably simulate far-from-equilibrium
dynamics, such as quantum quenches, of quantum many-body systems to the extent
that we can directly compare the data with experiments. To tackle this problem,
Kazuma chose the semi-classical phase-space method called the Truncated Wigner
Approximation (TWA). The essence of the TWA, roughly speaking, is to replace
the complicated quantum-mechanical average of operators with that over classical
trajectories in the phase space. He spent some time in learning this relatively new
method from the scratch and visited the laboratory of professor Polkovnikov several
times to polish his skills and extend the method to fermions in the
strongly-correlated regime (unfortunately, the outcome of this interesting project is
not included in this Thesis). His effort results in a concise but very pedagogical
introduction to the method given in Chap. 3, which, together with a quick summary
of ultra-cold Bose gases in Chap. 2, is definitely very useful to those who are
interested in non-equilibrium phenomena in cold gases. The crowning Chap. 5 is
the highlight of this Thesis, in which Kazuma tries to demonstrate the utility of the
TWA approach in far-from-equilibrium dynamics. Specifically, he extends the
TWA to investigate various dynamical phenomena subsequent to a quantum
quench in two- and three-dimensional Bose-Hubbard systems, and finds a good
agreement with the experimental data. Although we need further benchmark tests in
order to establish the TWA method as the standard tool, his results, I believe,
strongly suggest that the TWA is a promising method in far-from-equilibrium
problems and will contribute significantly to the development of quantum simu-
lation of non-equilibrium phenomena.

Kyoto, Japan Prof. Keisuke Totsuka
March 2020
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Supervisor’s Foreword II

Recent years have witnessed a rapid growth in studies of quantum many-body
physics thanks to technological advances in building and utilizing synthetic
quantum platforms, such as superconducting circuits, quantum dots, trapped ions,
Rydberg atoms trapped in an optical tweezer array, and ultracold gases in optical
lattices. Among those platforms, a system of an optical lattice loaded with an
ultracold gas especially has a long successful history in the application for analog
quantum simulations. Since the first observation of the superfluid-to-Mott insulator
transition of a Bose gas in an optical lattice in 2002, optical-lattice quantum sim-
ulators have been applied for studying various kinds of quantum many-body
physics so that they now attract much attention from a broad range of subfields of
physics, including not only atomic, molecular, and optical physics, and condensed
matter physics, but also nuclear and high-energy physics.

A drawback of such a rapidly growing topic with a long history is that hurdles
for novice researchers are now rather high because the accumulated knowledge and
the available toolbox are diverse, and the state-of-the art research has become more
and more complicated. This thesis written by Dr. Kazuma Nagao certainly serves as
a useful textbook for such novices to learn basics of quantum many-body physics
of the optical-lattice systems. The high readability of this thesis can be attributed
partly to the fact that it focuses on a single-component Bose gas in an optical lattice,
which serves as a quantum simulator of the single-component Bose-Hubbard model
and is one of the simplest settings in various quantum simulators realizable with
optical lattices. A remarkable advantage of the Bose-Hubbard model is that many of
its important features in and near equilibrium, such as quantum phase transitions,
thermodynamics, and elementary excitations, can be captured through analytical
calculations at least qualitatively. In Chap. 2, Dr. Nagao carefully reviews those
analytical calculations with several different approaches so that the readers can
acquire deep insights into the system and proficiency in field-theoretical methods.
In Chap. 4, he further develops the analytical approaches by combining the local
density approximation with three standard field theoretical techniques, namely the
Schwinger boson representation, the Holstein-Primakov expansion, and the
finite-temperature Green’s function techniques. He predicts that the Higgs
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amplitude mode of Bose gases in a three-dimensional optical lattice can be detected
as a resonance peak at accessible finite temperatures in the presence of a trapping
potential, demonstrating that the basics of the quantum many-body theory presented
in Chap. 2 are still very useful in the front-line research topic.

Another unique feature of this thesis is that Chap. 5 constitutes an exemplary
case of how theoretical researchers can use optical-lattice quantum simulators.
During his Ph.D. student period, Dr. Nagao engaged as a theoretical research
assistant in a project regarding development of optical-lattice quantum simulators
built by the Quantum Optics Group at Kyoto University. In a specific theme of the
project, the experimental group performed a quantum simulation of
non-equilibrium dynamics of the three-dimensional Bose-Hubbard model after a
sudden quench of the optical-lattice depth starting with a Mott insulating state to a
deep superfluid region. They measured the time evolution of the kinetic and
interaction energies. Since this high-dimensional system consisted roughly of ten
thousand particles, it was obviously infeasible for classical computers to simulate
the system in a numerically exact manner. Nevertheless, the accuracy of outputs
from the quantum simulator was ensured via thorough comparisons with exact
numerical computations in 1D. Hence, Dr. Nagao decided to utilize the quantum
simulation results as a quantitative reference for examining the performance of
some approximate numerical methods. In Chap. 5, he specifically chose the trun-
cated Wigner approximation based on the Gross-Pitaevskii equation, whose ped-
agogical review is presented in Chap. 3, in order to substantiate its quantitative
validity on the quench dynamics. He further applied the method with “a stamp of
approval” by the quantum simulator to the problem of spatial spreading of a
two-point correlation function and presented discussions from a viewpoint of
quasi-particle propagations. This type of usage of optical-lattice quantum simulators
is rather natural for and highly demanded by theoretical researchers, for whom the
contents in Chap. 5 will be a simple textbook example.

Higashi-Osaka, Japan Prof. Ippei Danshita
May 2020
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Preface

This Thesis studies fluctuation effects on non-equilibrium quantum many-body
phenomena in ultracold atoms trapped by an optical lattice. The remarkable con-
trollability and cleanness of the optical-lattice systemhave allowed us to regard it as an
analog quantum simulator to experimentally simulate quantum many-body systems
encountered in condensed-matter physics both in and out of equilibrium. One of the
most prominent advances in the research field is the quantum-gas microscope
approach to hunting theHiggsmode in a strongly-correlated superfluid gas trapped by
an optical lattice. The experimental technologies including this cutting-edge micro-
scopy have opened an intriguing way to elucidate low-energy physics effectively
emerging in strongly-correlated superfluid systems, and at the same time, posedmany
fundamental questions. Recent quantum-simulation studies in exploring
far-from-equilibrium dynamics of quantum many-body systems have also posed
many challenging issues to the researchfield of theoretical and computational physics.
Among them, it is important to address the issue about how to accurately and effi-
ciently simulate the experimentally observed non-equilibrium many-body dynamics
with classical computers. The first main part of this Thesis is devoted to studying the
experimental detectability of the Higgs amplitudemode as a sharp resonance peak in a
strongly-correlated Bose gas trapped by an optical lattice. There, field-theoretical
calculations are performed, which elucidate quantum and thermal fluctuation effects
on the stability of the Higgs mode in an actual experimental situation. The second part
of this Thesis is devoted to presenting a truncated-Wigner phase-space approach to
far-from-equilibrium quantum quench dynamics simulated by an optical-lattice
quantum simulator. A direct comparison with the actual experimental data shows a
remarkable agreement with no specific free parameter: it implies a potential ability of
such a semiclassical approach in simulatingmany-body dynamics in real experiments.
Some review parts instructively explain theoretical approaches used in this Thesis,
including the phase space approach to quantum dynamics and the Schwinger boson
techniques for strongly-correlated systems.

Hamburg, Germany Kazuma Nagao
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Chapter 1
Introduction

Abstract We review recent studies on the analog quantum simulation of Hubbard-
type models implemented by means of ultracold gases trapped by an optical lattice
potential. The topics include the quantum-gas microscope experiment to detect the
Higgs amplitude mode of strongly-interacting superfluid bosons on a lattice and
quantum-simulation studies on real-time dynamics of the Bose–Hubbard systems
far from equilibrium. We show the motivation of our studies treated in this Thesis
and the outline.

1.1 Backgrounds

A system of ultracold atoms in an optical lattice has offered a promising analog quan-
tum simulator for studying quantum many-body systems encountered in condensed
matter physics [1–7]. Loading degenerate Bose or Fermi atoms into optical-lattice
potentials with a sufficient depth, a large variety of cleanHubbard-typemodels is suc-
cessfully realized within the tight-binding approximation. For instance, degenerate
87Rb atoms tightly trapped by a cubic optical lattice are described by the three-
dimensional (3D) Bose–Hubbard model [1, 2]. One of the most important properties
of such an artificial system is the high controllability of microscopic parameters,
which characterize correlations among trapped particles. Indeed, the local inter-
atomic interactions divided by the tunneling amplitude between adjacent sites can be
widely controlled from weakly to strongly interacting regimes by simply changing
the laser intensity of lattice [1, 2] or utilizing Feshbach resonance techniques [8].
The performance of the ultracold-gas quantum simulator has been validated through
direct comparisons with quasi-exact numerical simulations on classical computers
[9–14] and has attracted a lot of attention from both theoretical and experimental
research areas.

Aswell as the advantageous feature of the system itself, there are variousmeasure-
ment techniques in order to detect quantum many-body states taken by an ensemble
of ultracold atoms. The experimental techniques include the time-of-flight (TOF)

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Singapore Pte Ltd. 2020
K. Nagao, Fluctuations and Non-Equilibrium Phenomena in Strongly-Correlated
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2 1 Introduction

imaging technique, which takes snapshots of momentum or velocity distribution
of atomic ensembles after released from a trap [2, 4], and the single-site resolved
imaging technique for counting occupied sites of atoms by means of the quantum-
gas microscope (QGM) [6, 7, 15]. These imaging techniques have been combined
with several spectroscopic methods to identify low-energy excitations and spectral
functions of a given system near equilibrium. Indeed, the TOF technique has been
used to characterize excitation spectra of ultracold gases, combining with the radio-
frequency spectroscopy [16], lattice shaking technique [17, 18], and standard Bragg
spectroscopy [19]. More recently, the QGM imaging has been applied to estimate
energy absorption after a lattice-amplitude shaking for strongly-interacting bosons
on a 2D lattice [20]. This technique allows one to detect temperature increases,
which are caused by the lattice modulations and estimated through counting the
number of particle-hole excitations in the atomic limit, with high sensitivity. Thanks
to this advantage, in the experimental work [20], Endres and his coworkers were
able to achieve a linear-response regime, in which the modulation amplitude is much
smaller compared with the previous studies [17, 18], so that only low-lying excita-
tions are kicked out. They have utilized this QGMspectroscopy for hunting the Higgs
amplitude mode, which is a fundamental excitation mode emerging in the strongly-
interacting superfluid state close to the quantumphase transition, and obtained promi-
nent results capturing the low-energy spectral properties of the strongly-correlated
superfluid.

The optical-lattice system is a suitable experimental system for studying real-time
dynamics of quantum systems because it is decoupled from the external environment
and has a relatively long relaxation time compared with solid state systems [21]. It
implies that this system has a lot of potential to gain access to far-from-equilibrium
quantum many-body dynamics under a highly controlled way [22, 23]. For macro-
scopic many-body systems, it is generally hard to accurately simulate their real-time
dynamics with currently available numerical methods on classical computers. The
difficulty in classically simulating quantum many-body dynamics is related to the
fact that, if exact numerical simulations, e.g., the exact diagonalization approaches,
are carried out on computers, one encounters the exponential growth of the Hilbert-
space dimension with system size. Moreover, quantitative simulations using the so-
called non-equilibrium dynamical-mean-field theory (DMFT) typically employ the
continuous-time quantumMonte-Carlo (CTQMC) algorithm as its impurity solver,1

but the intrinsic minus-sign problem limits timescales, during which the real-time
dynamics is accurately simulatable [24, 25]. One of the important results associated
with quantum simulations of non-equilibrium real-time dynamics is the direct com-
parisonwith quasi-exact numerical simulations as done inRef. [11]. There, numerical
simulations of several quantum-quench dynamics (see also below) were carried out
by means of the time-dependent density matrix renormalization group (t-DMRG),
which is an established computationalmethod formulated on the basis of the concepts
of matrix-product states (MPS), and basically applicable to low-entangled systems in

1We note that one can also utilize other options for impurity solvers as well as the CTQMC. See
also Refs. [24, 25].
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1D. Trotzky and coworkers have demonstrated that the analog quantum simulator for
the 1D Bose–Hubbard model can provide accurate data of quench dynamics even in
a long-time region, where the t-DMRG description fails. Quantum-simulation stud-
ies [11–13], whose experimental results were compared with t-DMRG simulations,
have stimulated the research field of computational physics. Considerable effort has
been paid so far to explore computational approaches for quantitatively accessing
long-time quantum thermalization dynamics of 1D systems beyond the limitation
of t-DMRG. The most recent developments include the density-matrix truncation
(DMT) theory [26] and the time-dependent variational principle (TDVP) with MPS
[27–30].

Among diverse quantum many-body dynamics, particular attention has been
devoted to quantum quench dynamics, which arise after a sudden and substantial
change of parameters in the Hamiltonian [11, 12, 22, 23, 31–38]. In Ref. [11],
Trotzky and coworkers have investigated relaxation dynamics of Bose gases in a 1D
optical lattice after sudden quantum quenches from a simple density pattern over
the lattice, and detected that the local density relaxes into a steady value within
experimental timescales. In Ref. [12], Cheneau and coworkers have observed effec-
tive light-cone dynamics of an equal-time correlation function in a 1D optical lat-
tice, and they demonstrated that in the strongly interacting region the propagation
speed is bounded by the maximum group velocity of particle-hole excitations. In
recent years, some experimental groups have explored far-from-equilibrium dynam-
ics of high-dimensional Bose–Hubbard systems quenched from typical quantum
states [13, 39, 40]. The Max-Planck institute group has explored the Kibble–Zurek
dynamics after a finite-time quench across the quantum phase transition from the
Mott-insulator (disorder) to superfluid (order) phases in the Bose–Hubbard models
in all spatial dimensions, i.e., d = 1, 2, 3 [13, 39]. More recently, an experimental
group atKyotoUniversity has observed redistribution dynamics of kinetic and onsite-
interaction energies of Bose gases in a cubic optical lattice after a rapid quench of the
lattice depth froma strongly-interactingMott insulator state into aweakly-interacting
parameter region [40].

1.2 Motivation

Motivated by these experimental developments and prominent results, in this The-
sis, we present the results of theoretical analyses of near- and far-from-equilibrium
dynamics of ultracold Bose gases in optical lattices. In the first part of this Thesis,
motivated by the experiment [20] in the Max-Planck institute, we examine the sta-
bility and detectability (or visibility) of the Higgs mode in the ultracold-gas systems.
Theoretical calculations [41–49] stimulated by the same experiment have argued that
the Higgs mode strongly attenuates in two dimensions due to the combined effects
of the quantum and thermal fluctuations with the spatial inhomogeneity of the trap-
ping potential. Indeed, in Ref. [20], the measured response, which is a function of
the modulation frequency of the lattice depth, exhibits a broad continuum above a
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threshold frequency rather than a sharp peak although the frequency coincides well
with the Higgs gap, which is calculated theoretically. In this sense, the existence of
a stable Higgs mode in the cold-atomic systems remains to be an open issue. This
Thesis presents the following way toward catching a stable Higgs mode: if we con-
sider a 3D optical lattice instead of 2D one and perturb the condensate only partially
around the center of the trap, at which the density is tuned to unity as in Ref. [20], we
can observe a sufficiently-stable Higgs mode in the corresponding response function
even at typical temperatures of experiments. Our theoretical approach, which is a
generalization of the finite-temperature Green’s function theory developed by the
current author and Danshita previously [50], incorporates both quantum and thermal
fluctuation effects within the leading 1-loop order. Combining this field-theoretical
method and the local density approximation, we elucidate non-uniform confinement
effects on the uniform response functions, which are calculated with assumptions of
no confinement trap. Furthermore, to discuss the responses of the Higgs mode, we
formulate linear-response functions to two external perturbations, i.e., the modula-
tion in the lattice amplitude and in the on-site interacting strength, respectively. In
particular, the latter scheme is first considered by our work in the context of exploring
the Higgs mode.

In the second part, motivated by the experiment [40] at Kyoto University, we
investigate far-from-equilibrium quantum-quench dynamics of Bose gases in higher-
dimensional optical lattices than 1D. Takasu and coworkers reported that the kinetic
and interaction energies quickly evolved into (transient) steady values after the lat-
tice depth was abruptly decreased from the values corresponding to Mott-insulating
states. Moreover, the experimental results have remarkably shown that the sum of
these energies is conserved at early times reflecting the isolation of the atomic ensem-
ble.An immediate use of such fundamental results is to examine or develop numerical
methods for computing quantum many-body dynamics by taking them as accurate
references. Nevertheless, any quantitative approach that can recover the experimental
results in three dimensions has not been established thus far. In this Thesis, aiming
to simulate the energy-redistribution dynamics quantitatively, we adopt a semiclassi-
cal approximation formulated by a phase-space representation of quantum systems,
namely, the truncated-Wigner approximation (TWA), which systematically provides
a leading-order correction of fluctuations to the mean-field or saddle-point dynamics
[51–53]. This method is formulated on the basis of a quantum-to-classical mapping
in which computing the quantum average of an operator is replaced with a classical
problem of solving Gross–Pitaevskii-type equations for classical Bose fields obeying
random initial conditions sampled from an initial Wigner function (some advantages
of this method will be explained in a later chapter). In this Thesis, generalizing the
previous TWA techniques [33, 54, 55] developed for quantum quenches starting
from a Mott-insulator state at high densities, we numerically simulate the redistribu-
tion dynamics of the kinetic and interaction energies in the 3D system starting from
the opposite limit, i.e., a Mott insulator at unit filling. Comparing the semiclassical
and experimental results directly, it is demonstrated that numerical results simulated
by the TWA agree well with the experimental data with no fitting parameter.
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As a further application of the TWA, we also study how the density-density corre-
lation function between two distant points spreads and grows after a sudden quench
in Bose gases trapped by a 2D optical lattice. This application is motivated by experi-
mental and theoretical works in ultracold neutral atoms, trapped ions, and interacting
spin systems [12, 56–63]. Thus far, the correlation spreading and its relationshipwith
the Lieb–Robinson bound [64], which gives an upper bound of information prop-
agation over space, have been studied mostly in 1D systems. Theoretically, this is
due to the limitation of currently-available tools to simulate dynamics of non-local
correlations. More recently, spreading of spatial correlations in two dimensions has
been explored by some works [40, 65–67], whereas their quantitative properties are,
however, less understood compared with the 1D case. In this Thesis, we focus on the
semiclassical regime of the 2D Bose–Hubbard model, and analyze the time evolu-
tion of the equal-time density-density correlation function for different initial states.
We find that when the system is initially prepared in a coherent state that describes
the ground state in the non-interacting limit, a mean propagation velocity of a wave
packet observed in the density-density correlation function strongly depends on the
final interaction. In contrast, when the system is initially in a Mott-insulator state,
the wave packet in the density-density correlation function propagates with a nearly
constant velocity with respect to the final interaction.

1.3 Outline of This Thesis

This Thesis is organized as follows: In Chap. 2, we review ultracold Bose gases
trapped by optical lattice potentials. There, we first derive the single-band Bose–
Hubbard model within the tight-binding approximation, and then, we summarize
the ground state properties of the Bose–Hubbard model focusing on the superfluid-
Mott-insulator quantum phase transitions. In addition, we discuss the collective exci-
tations of the strongly-correlated superfluid near the transition. In the final part of this
chapter, we introduce an effective pseudospin-1 Hamiltonian of the Bose–Hubbard
model allowing us to investigate low-energy properties in the strongly-correlated
regime. This approach will be used in Chap. 4 to analyze the response functions in
combination with the field-theoretical linear-response theory and the local-density
approximation.

In Chap. 3, we review the phase-space method for expressing quantum systems
by means of c-number functions defined in a phase space. There, we especially focus
on the coherent-state Wigner representation of Bose fields. The fundamental ingre-
dients constructing theWigner representation, i.e., theWigner function and theWeyl
symbol, are introduced to rewrite the quantum average of an arbitrary operator into
an entirely classical form. The coherent-state phase-space representation of dynam-
ics of Bose fields is formulated in terms of the time-dependent Wigner function.
From this representation, we derive the TWA as a semiclassical approximation for
the time evolution of the Wigner function. There, we also illustrate the schematic
picture and advantages of the TWA. Furthermore, we review an instructive approach



6 1 Introduction

to derive the semiclassical approximation starting from a phase-space path-integral
representation of quantum dynamics.

In Chap. 4, which is based on Ref. [68], we study the responses of the Higgs
modes to the temporal modulations of the lattice amplitude and the onsite-interaction
strength in the cubic optical lattice. We analyze the linear-response functions by the
perturbative calculation of the finite-temperature Green’s function for the effective
pseudospin-1 model at high and unit fillings. It is shown that when the density of
the system is assumed to be uniform, we can observe a well-defined Higgs-type
resonance peak in the response functions even at the typical temperature scale in
the current experiments. Furthermore, we calculate the effects of a non-uniform trap
on the response functions within the local density approximation, and discuss the
robustness of the resonance peak against the non-uniformity. There, we argue that if
we perturb a part of the condensate, which is distributed over a subregion around the
trap center, the resonance peak still survives at typical temperatures.

In Chap. 5, which describes the results obtained in Ref. [69], we investigate far-
from-equilibrium dynamics of Bose gases in optical lattices after sudden quantum
quenches. Using the TWA, we numerically simulate the redistribution dynamics
of the kinetic and onsite-interaction energies after a sudden quench from a Mott
insulating state in a 3D optical lattice. Our results reveal that the results obtained
by the TWA agree well with the experimental data without any fitting parameter.
Furthermore, we analyze correlation spreading dynamics after a sudden quench in a
2D optical lattice. We focus especially on the initial state dependence of the behavior
of the correlation spreading.

InChap.6,we conclude thisThesis andpresent outlooks to future subjects. Finally,
Appendices A and B offer supplemental information for the main part.
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Chapter 2
Ultracold Bose Gases in Optical Lattices

Abstract In this chapter, we review the basic properties of ultracold Bose gases
tightly trapped by optical lattice potentials. In Sect. 2.1, we briefly describe the
optical-dipole potentials for trapping neutral atoms and show how one generates
optical lattice potentials in laboratories. In Sect. 2.2, we derive the single-band Bose–
Hubbard model within the tight-binding approximation. In Sect. 2.3, we review the
superfluid-Mott-insulator quantum phase transition of the ground state of the Bose–
Hubbard model. In Sect. 2.4, we discuss collective excitation modes in the superfluid
phase near theMott-insulator transition. In Sect. 2.5,we formulate an effective-model
description for the strongly-correlated regime by usingHilbert-space truncation tech-
niques. This description will be used in Chap. 4 in order to analyze dynamical prop-
erties of strongly-correlated bosons in the vicinity of the superfluid-Mott-insulator
transition.

2.1 Optical-Lattice Potentials

The spatially-periodic optical-lattice potential is a key ingredient to realize various
Hubbard-type models in ultracold-gas experiments. Optical lattices are generated
by standing-wave lasers far detuned from an atomic resonance in order to confine
neutral atoms inside a lattice geometry of interest without optical dissipations [1].
When an atom is put in the presence of an oscillating (off-resonant) laser field E(r, t)
with an angular frequency ωL , and the frequency is detuned sufficiently far from the
atomic resonance, then, a conservative force effectively acts on the atom, which is
described by a laser-induced dipole potential [2–4]:

Vind(r) = −1

2
Re [α(ωL)] |E(r, t)|2, (2.1)

whereα(ωL) is referred to as the complexACpolarizability and the overline indicates
a time average. The induced potential can be regarded as an effective shift of atomic
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levels due to laser-induced virtual transitions between unperturbed atomic states, i.e.,
the AC Stark effect [2, 3]. The strength and sign of Eq. (2.1) depend on the laser
intensity and frequency ωL .

To visualize optical lattices concretely, let us consider a superimposing pair of
two counter-propagating lasers with the same wavelength λlat along x-direction

E(x, t) = êE0cos(klatx)
[
e−iωL t + c.c.

]
. (2.2)

Here, klat = 2π/λlat is the wave number and ê denotes a unit vector oriented to the
polarized direction. The consequence of Eq. (2.1) is that, in the presence of this
oscillating laser field, atoms are trapped around periodic wells of a one-dimensional
lattice potential, which is denoted by

V 1D
lat (x) = V0cos

2 (klatx) . (2.3)

The lattice depth V0 can be controlled by tuning the laser intensity I ∼ E2
0 . The lattice

spacing between two potential minima, dlat , is determined from the wavelength such
that dlat = λlat/2. It is convenient to measure the lattice depth V0 with units of the
recoil energy ER, which is given by

ER = �
2k2lat
2m

= �
2π2

2md2
lat

. (2.4)

In the context of cold atoms, the optical lattice potentials are conventionally written
as

V 1D
lat (x) = sERcos

2 (klatx) , (2.5)

where s = V0/ER. The recoil energy implies an acquired energy of an atom after
absorbing or emitting a photon with momentum �klat from the laser field.

Inserting additional laser beams from different directions, one can also realize a
two-dimensional square or three-dimensional cubic optical lattice:

V 2D
lat (x, y) = sER

[
cos2 (klatx) + cos2 (klat y)

]
, (2.6)

V 3D
lat (x, y, z) = sER

[
cos2 (klatx) + cos2 (klat y) + cos2 (klatz)

]
. (2.7)

Furthermore, it is possible to engineer various types of optical-lattice potential with
non-trivial geometries in ultracold-gas experiments. The examples established thus
far include the double-well superlattice [5], checkerboard geometry [6], honeycomb
(or hexagonal) lattice [7], triangular lattice [8, 9], Kagome lattice [10], and Lieb
lattice [11]. For reviews, see Refs. [12–14].
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2.2 Bose–Hubbard Models

Let us consider an ultracold gas of spinless Bose atoms with an atomic mass m in
the presence of a cubic optical lattice

Vlat(r) = sER
[
sin2(klatx) + sin2(klat y) + sin2(klatz)

]
. (2.8)

This system is described by the following second-quantized Hamiltonian [1]:

Ĥb =
∫

dr ψ̂†(r)
[
−�

2∇2

2m
+ Vlat(r)

]
ψ̂(r) + g

2

∫
dr ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r),

(2.9)

where g = 4π�
2as/m and as are the coupling constant and s-wave scattering length,

respectively. The boson annihilation and creation operators ψ̂(r) and ψ̂†(r) satisfy
the canonical commutation relations:

[ψ̂(r), ψ̂†(r′)] = δ(r − r′), [ψ̂(r), ψ̂(r′)] = [ψ̂†(r), ψ̂†(r′)] = 0. (2.10)

When the lattice potential is sufficiently deep, the lowest-lying first band is most
dominant and the higher-band contributions are negligible because the energy gap of
the first and second bands is much larger than the thermal and mean-field interaction
energies per atom [15]. Therefore, it is allowed to expand the Bose field operator
with respect to the lowest-band Wannier basis:

ψ̂(r) =
∑

i

âiw0(r − Ri ), ψ̂†(r) =
∑

i

â†i w
∗
0(r − Ri ), (2.11)

where i = (ix , iy, iz) is an integer-valued vector andRi = dlat(ix , iy, iz) indicates the
lattice minima. The functionw0(r − Ri ) is the lowest-bandWannier function, which
is supposed to be localized around r = Ri . The new canonical operators âi and â†i
are introduced so that

[âi , â†j ] = δi, j , [âi , â j ] = [â†i , â†j ] = 0. (2.12)

The lattice operator âi annihilates a boson localized around i th site.
Substituting Eq. (2.11) into Eq. (2.9) andmaking the tight-binding approximation,

we obtain the single-band Bose–Hubbard model [1, 16],

Ĥb ≈ ĤBH = −J
∑

〈i, j〉
(â†i â j + h.c.) + U

2

∑

i

â†i â
†
i âi âi , (2.13)

where the bracket symbol 〈i, j〉 implies a nearest neighbor pair. In this representation,
the first term means the kinetic energy associated with hopping of atoms from site
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to site. The second term gives the energy increase when multiple atoms occupy a
site at the same time. These energies are characterized by the hopping amplitude J
and the onsite-interaction strength U . They are described by the localized Wannier
functions such that

J = −
∫

dr w∗
0(r − Ri )

[
−�

2∇2

2m
+ Vlat(r)

]
w0(r − R j ), (2.14)

U = g
∫

dr |w0(r)|4, (2.15)

where |i − j | = 1. No offset term per each site is assumed to arise from Eq. (2.14)
at i = j . In experiments, the dimensionless ratio J/U is tunable through changing
the optical-lattice depth or using the Feshbach resonance [1, 12, 17, 18].

To illustrate the dependence of J and U on the lattice depth, here we extract
approximate results of them from Ref. [12]. In three dimensions and for a deep-
lattice limit s 	 1, they approximately behave like

J ∼ 4√
π
s3/4exp

(−2
√
s
)
ER, (2.16)

U ∼ 8

π

as
dlat

A3
I s

3BI ER, (2.17)

where (AI , BI ) = (
√

π/2, 1/4). As s increases, the hopping amplitude decreases
exponentially because it characterizes a tunneling property between adjacent sites.
In contrast, the interaction strength algebraically grows with s.

In typical setups of cold-atomic experiments, there is also a non-uniform external
potential to confine the atoms. If effects of the confinement cannot be neglected,
we have to insert an additional term into Eq. (2.13). Indeed, in the existence of a
non-uniform trapping potential Vtrap(r), which varies slowly over space, the Bose–
Hubbard model acquires a local offset energy [1]:

Ĥtrap =
∑

i

εi â
†
i âi , (2.18)

where the one-body offset εi is given by

εi =
∫

dr Vtrap(r)|w0(r − Ri )|2 ≈ Vtrap(Ri ). (2.19)

Trapping effects will be important when we discuss the stability of the Higgs mode
corresponding to experimental systems. The details will be presented in Chap. 4.

Here it is convenient to introduce the grand canonical representation of the Bose–
Hubbard model:
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ĤBH = −J
∑

〈i, j〉
(â†i â j + H.c.) + U

2

∑

i

â†i â
†
i âi âi − μ

∑

i

â†i âi . (2.20)

For the cold-atomic systems, the chemical potential μ is generally dependent on the
site due to the trapping potential. Such a non-uniform effect is given by the offset
energy εi .

2.3 Superfluid-Mott-Insulator Quantum Phase Transitions

TheBose–Hubbardmodel has two different ground states (so called quantumphases)
depending on the dimensionless local interaction U/J and the mean occupation per
site [16]. When the density is incommensurate, the bosons can form a superfluid
phase at zero temperature for any local and positive interactions. In contrast, when
the density is commensurate and the interaction becomes greater than a threshold
value, the ground state undergoes a phase transition into a Mott-insulator phase at
zero temperature. Such a zero-temperature transition, which is essentially driven by
quantum fluctuations stemming from competition between two non-commutative
parts in ĤBH, i.e., the kinetic and interaction energies, is called quantum phase tran-
sitions [19]. The quantum phase transition should be contrasted with conventional
classical phase transitions, which are induced by thermal fluctuations.

When the spatial dimension is greater than one (d > 1), the superfluid state
exhibits a long-range order while the insulator state is disordered [16]. Then, the
transition is regarded as a second-order transition [16, 19–22]. The phases are distin-
guished by a local complex number (order parameter) associated with spontaneous
breaking of U(1) symmetry. On the other hand, in one dimension (d = 1), there is no
phase transition with continuous-symmetry breaking even at zero temperature (the
Mermin–Wagner–Coleman theorem [23, 24]) because long-range orders are melted
by strong quantum fluctuations. Nevertheless, the one-dimensional ground state can
exhibit a topological phase transition without symmetry breaking, which is referred
to as the Berezinskii–Kosterlitz–Thouless transition [25–29].

The Mott-insulator state is incompressible and has two gapped elementary exci-
tations, i.e., the particle and hole excitations [16]. Both of these energy gaps vanish
at the phase transition point. On the other hand, the superfluid state is compress-
ible and has a gapless excitation. For d > 1 this excitation is nothing else but the
Nambu–Goldstone (NG) mode. In contrast, at d = 1, the gapless excitation, which
is related with the existence of the quasi-long range order with a power law decay,
is universally described by the Tomonaga–Luttinger liquid theory [29].

The superfluid-Mott-insulator transition is characterized by the behaviors of the
energy gap 	 and correlation length ξ [19]. Approaching the transition point, the
energy gap vanishes and the correlation length diverges as

	 ∼ J |w − wc|νzdyn , ξ−1 ∼ d−1
lat |w − wc|ν, (2.21)
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where w is a dimensionless parameter and wc indicates the transition point. The
so called critical exponents ν and zdyn are usually independent of the microscopic
detail of the lattice system [19]. In the vicinity of the transition point, associated with
the divergence of the time and length scales, some important physical quantities,
e.g., correlation functions of the ground state, obtain a scaling form described by
a set of such universal critical exponents. The superfluid-Mott-insulator transition
belongs to the universality class of the critical phenomena of the (d + 1)-dimensional
classical XY model [16]. In particular, the dynamical exponent zdyn is predicted as
zdyn = 1. We can also induce a similar superfluid-insulator transition by varying the
mean occupancy or chemical potential [16]. Then, the transition is described by the
universality class of the dilute Bose-gas transition, and the dynamical exponent is
not unity, but zdyn = 2 [19].

The superfluid-Mott-insulator transition of the Bose–Hubbard model has been
observed experimentally in ultracold 87Rb atoms in a 3D optical lattice [17]. In the
experiment, interference patterns of expanding gases released from external poten-
tials were imaged by using the time-of-flight technique at different optical-lattice
depths. The experimental results clearly detected a characteristic onset of the quan-
tum phase transition, i.e., losing or restoring of phase coherence in the interference
patterns.

2.3.1 Mean-Field Theory of the Superfluid-Mott-Insulator
Transition

Mean-field calculations are helpful in roughly imagining the ground state proper-
ties of the Bose–Hubbard model. The superfluid-Mott-insulator transition can be
described within several mean-field treatments such as the site-decoupling mean-
field approach [20] and Gutzwiller’s variational ansatz [30–33]. It should be stressed
that the phase transition into the Mott-insulator state cannot be captured within the
standard Bogoliubov approximation [20].

According to Ref. [20], let us determine the phase boundary using the site-
decoupling mean-field approximation. In this scheme, we need to approximate the
(non-local) kinetic-energy operator in the Bose–Hubbard model into a local operator
such that

â†i â j = ψ(â†i + â j ) − ψ2, (2.22)

where ψ is a mean field, ψ = 〈âi 〉, and it is assumed to be real. Performing this
approximation, computing the ground state energy, and making the Ginzburg–
Landau expansion, we obtain the value of the chemical potential at the phase bound-
ary, which is a function of z J/U and the filling factor n0 of theMott-insulator phase:
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Fig. 2.1 Mean-field phase diagram of the Bose–Hubbard model at zero temperature. The vertical
axis is the chemical potential and the horizontal axis is the tunneling amplitude. The blue-solid line
indicates the phase boundary derived from the site-decoupling mean-field approximation (see also
Ref. [20]). Each “lobe” corresponds to a Mott-insulator regime with occupation n0

μ± = 1

2
(2n0 − 1 − J z/U ) ± 1

2

√
1 − 2(J z/U )(2n0 + 1) + (J z/U )2, (2.23)

where z = 2d is the coordination number. The subscript ± indicates the upper and
lower lines of theMott-insulator regimes. In Fig. 2.1, we draw Eq. (2.23) in the z J -μ
plane. The phase boundary has a lobe-like shape, which surrounds the regimes of the
Mott-insulator phase. It should be noted that each tip of the Mott lobes corresponds
to a commensurate density. Equating μ+ and μ−, we obtain the critical value of the
commensurate phase transition at the tips:

(
U

zJ

)

c

= 2n0 + 1 +
√

(2n0 + 1)2 − 1 = (
√
n0 + 1 + √

n0)
2. (2.24)

As we will see in Sect. 2.5.4, the entirely same result can be derived from the
Gutzwiller approach.

For getting precise results beyond the qualitative mean-field approximation, it
is necessary to deal with quantum fluctuation effects by employing complicated
non-perturbative methods. For the unit-filling case, the precise phase boundary has
been computed by some quasi-exact numerical techniques, e.g., the quantumMonte-
Carlo (QMC) approaches for d = 2 [21] and d = 3 [22], and the density matrix
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renormalization group (DMRG) approach for d = 1 [34]. For the cases of large
filling rates, one can also quantitatively evaluate the ground-state phase boundary by
using the techniques of the strong-coupling expansion [35].

2.3.2 Field-Theoretical Description for the Quantum Phase
Transition

In Sect. 2.4,wewill review theHiggsmode of superfluidBose gases near the quantum
phase transition. For the purpose, let us here introduce a field-theoretical description
for the transition [19, 36]. Our starting point is a grand-canonical partition function
of the Bose–Hubbard model (2.20), which is written as a coherent-state path-integral
form [19, 36]:

� =
∫

Da∗Da e−SBH[a∗,a]. (2.25)

The weight function of the path integral is characterized by the Euclidean action for
the Bose–Hubbard model,

SBH[a∗, a] =
∫ β/2

−β/2
dτ

∑

i

{
a∗
i (τ )

(
∂

∂τ
− μ

)
ai (τ ) + U

2
a∗
i (τ )a∗

i (τ )ai (τ )ai (τ )

}

− J
∫ β/2

−β/2
dτ

∑

〈i, j〉

{
a∗
i (τ )a j (τ ) + a∗

j (τ )ai (τ )
}
. (2.26)

The complex field ai (τ ) depends on the imaginary time τ ∈ [−β/2, β/2] and repre-
sents the fluctuations of the lattice Bose field. Moreover, β = (kBT )−1 denotes the
inverse temperature. Throughout this subsection, we set � = 1 for simplicity.

Suppose that the system is in a superfluid phase near theMott-insulator transition.
Let us derive an effective action characterizing the low-energy collective behaviors
of the superfluid phase (for details, see Ref. [36]). As a first step, we take a Hubbard–
Stratonovich transformation with a complex axillary field �i , which corresponds to
the superfluid order parameter. Then, we integrate out the original Bose fields and
define the action for the remaining axillary fields:

� =
∫

Da∗DaD�∗D� e−SBH[a∗,a,�∗,�∗]

=
∫

D�∗D� e−S̃[�∗,�∗], (2.27)
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where S̃[�∗, �∗] is in general a complicated functional of its arguments. Performing
the expansion of S̃[�∗, �∗] with respect to �i up to the forth order and taking a
continuous limit, we obtain

� ≈
∫

Dψ∗Dψe−Seff [ψ∗,ψ], (2.28)

whereψ(τ, x) is a rescaled field introduced asψ = �(dd/2
lat z J )−1 [36]. The effective

action Seff [ψ∗, ψ] describing the superfluid order parameter is given as follows:

Seff = βF0 +
∫

dτ

∫
dd x

{

K1ψ
∗ ∂

∂τ
ψ + K2

∣∣∣
∣

∂

∂τ
ψ

∣∣∣
∣
2

+ 1

2m∗
|∇ψ |2 + r |ψ |2 + u

2
|ψ |4

}

, (2.29)

where F0 is the thermodynamic free-energy density in the imaginary-time axis. The
coefficients K1, K2, m∗, r , and u are functions of the microscopic parameters of the
Bose–Hubbard model. The explicit forms are found in Ref. [36].

The static part of the total effective action, which has no dynamical terms with K1

and K2, characterizes the ground state configuration of the order parameter within
the saddle-point approximation. When the system is supposed to take a spatially
uniform ground state, the following configuration of the order parameter amplitude
is found to minimize the static part of the effective action for r < 0 or r > 0:

|ψ | =
{√− r

u (r < 0)

0 (r > 0)
. (2.30)

Thus, r < 0 (r > 0) corresponds to the order (disorder) phase at zero temperature,
and the value r = 0 gives the phase boundary separating different phases.

It is important to emphasize that K1 and K2 should satisfy the following relations
[19, 36]:

K1 = − ∂r

∂μ
, K2 = 1

2

∂K1

∂μ
. (2.31)

These follow from the invariance of the effective actionwith respect to theU(1) gauge
transformation such thatψ → ψeiφ andμ → μ + i ∂φ

∂τ
. In particular, the former one

implies that K1 vanishes at the tip of the Mott lobe, at which the atomic density is
commensurate. There, the effective action acquires an effective Lorentz invariance:
it is invariant with respect to the complex-conjugated pair replacement of the field
ψ → ψ∗. This is nothing else but the origin of the dynamical critical exponent
zdyn = 1 near the Mott-insulator transition at commensurate densities. Due to such a
characteristic property, the superfluid near the Mott-insulator transition can exhibit
emergent-relativistic dynamics of the order parameter, such as the Higgs mode (see
the next section) [32].



18 2 Ultracold Bose Gases in Optical Lattices

2.4 Higgs and Nambu–Goldstone Modes

Let us consider real-time dynamics of the commensurate superfluid near the Mott-
insulator transition. Our starting point is the analytically-continued effective action
of Eq. (2.29) at K1 = 0 [37], which is given by

Seff =
∫

dt
∫

ddx

{

−K2

∣∣∣∣
∂

∂t
ψ

∣∣∣∣

2

+ 1

2m∗
|∇ψ |2 + r |ψ |2 + u

2
|ψ |4

}

, (2.32)

where t represents the real-time axis. Setting δSeff/δψ
∗ = δSeff/δψ = 0, we obtain

the relativistic non-linearKlein–Gordon equation describing the saddle-point dynam-
ics of the order parameter:

K2ψ̈ − 1

2m∗
∇2ψ + rψ + uψ |ψ |2 = 0. (2.33)

Unlike the non-relativistic Gross–Pitaevskii equation, this equation has the second-
order time-derivative term reflecting the relativistic nature of the effective action.

To describe low-energy collective fluctuations of the order parameter, let us lin-
earize the Klein–Gordon equation with respect to a small fluctuation around the
equilibrium configuration ψ = ψeq = √−r/u [cf. Eq. (2.30)]:

ψ(t) = ψeq + Ueip·r−iωt − Ve−ip·r+iωt , (2.34)

whereU andV are small amplitudes, and p and ω are the momentum and frequency
of the fluctuation, respectively. Notice that U − V corresponds to an amplitude
fluctuation of the order parameter while U + V does to a phase fluctuation of that.
Substituting this into Eq. (2.33) and neglecting the high-order contributions, we find
that there are two orthogonal eigenmodes corresponding to the amplitude and phase
oscillations. The corresponding eigenfrequencies are calculated as follows:

ωhiggs =
√

	2
higgs + c2|p|2, ωng = c|p|, (2.35)

where c2 = (2m∗K2)
−1. The former dispersion ωhiggs describes the amplitude fluc-

tuation mode and opens an energy gap 	higgs = √−2r/K2 if r < 0. This mode is
referred to as the Higgs or amplitude mode [37]. On the other hand, the latter gapless
dispersion ωng characterizes the phase fluctuation mode of the order parameter. This
is known as the Nambu–Goldstone (NG) or phase mode associated with restoring the
U(1) symmetry [37]. The schematic picture of these modes is depicted in Fig. 2.2.

Such separation and orthogonality of the amplitude and phase fluctuations stem
from the fact that they are no longer canonical conjugate with each other when the
effective action has the relativistic Lorentz invariance. In other words, each com-
ponent of fluctuations can have a certain momentum as a conjugate partner, inde-
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Fig. 2.2 Schematic picture
of the Higgs and NG modes.
The Higgs mode corresponds
to an amplitude oscillation of
the order parameter along the
radial direction of the
mexican-hat potential. On
the other hand, the NG mode
corresponds to a phase
oscillating motion of that on
the bottom of the potential
along the azimuthal direction

pendently. The amplitude fluctuation and its conjugate momentum (not the phase
fluctuation) form one collective mode, i.e., the gapped Higgs amplitude mode, which
is independent of the phase fluctuation. In a similar way, the phase fluctuation and its
conjugate momentum also form the gapless NG phase mode independently. This is
in contrast to the non-relativistic Gross–Pitaevskii case, where the phase fluctuation
is canonical conjugate with the amplitude one. In this case, these degrees of freedom
form only one collective mode, namely the gapless Bogoliubov mode.

The Higgs mode can ubiquitously emerge in general thermodynamic phases with
a particle-hole symmetry and spontaneous breaking of a continuous symmetry [37,
38]. This feature has attracted particular attention from many experimental research
fields of condensed matter and ultracold gases [37]. The examples of quantummany-
body systems, which can show the Higgs mode, include superconductors NbSe2
[39–43] and Nb1−xTixN [44–47], quantum antiferromagnets TlCuCl3 [48, 49] and
KCuCl3 [50], charge density wave materials K0.3MoO3 [51, 52] and TbTe3 [53, 54],
superfluid 3He B-phase [55, 56], two-component Fermi gases across the BCS-BEC
crossover [57], and superfluid Bose gases in optical lattices [58, 59]. Moreover, the
Higgs mode can be regarded as a counterpart of the Higgs boson in the standard
theory of high energy physics [60].

Within the linear approximation, the Higgs and NG modes can be defined as
decoupled eigenmodes of the order parameter dynamics. However, in more realistic
situations, these modes can attain intrinsic damping rates because there are non-
negligible interactions between them due to the non-linearity of the original model.
Indeed, the Higgs mode can attenuate into two NGmodes, and the damping property
affects its visibility in experimental probes [32, 61, 62]. The damping rate of the
Higgs mode arises from a virtual transition mediated by such Higgs-NG interactions.
In a perturbative picture of the field-theoretical language, it can be interpreted as a
loop correction to the eigenenergyof theHiggsmode,which showsupdue to quantum
and thermal fluctuations [61, 62].
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2.5 Hilbert-Space Truncation and Effective Pseudospin-1
Models

In this section, we focus on an effective and microscopic description of the strongly-
interacting regime of the Bose–Hubbard model for U/J 	 1. For the purpose, it is
convenient to modify our notation of the Bose–Hubbard model (2.20) as follows:

ĤBH = −J
∑

〈i j〉
â†i â j + U

2

∑

i

(n̂i − n0)
2 −

∑

i

μ(n̂i − n0),

where ni = â†i âi is the density operator at site i and n0 is the commensurate filling
factor. The difference from the previous definition is the origin of measuring the
chemical potential.

This section is organized as follows: In Sect. 2.5.1, we introduce a reduced local
Hilbert space to define a strongly-correlated effective model and a pseudospin repre-
sentation of physical operators in the projected space based on the Schwinger-boson
theory. In Sect. 2.5.2, we derive an effective model for a large-filling limit and dis-
cuss its intrinsic property, i.e., an effective particle-hole symmetry. In Sect. 2.5.3,
we generalize the large-filling effective model into low-filling cases, which corre-
spond to typical setups in ultracold-gas experiments. In Sect. 2.5.4, we discuss the
ground state property of the effective model within a Gutzwiller mean-field ansatz.
Finally, in Sect. 2.5.5, especially at a high-filling limit, we derive mean-field dis-
persion relations of elementary excitations inside the superfluid and Mott-insulator
phases, respectively.

2.5.1 Reduced Hilbert Space in Strongly-Correlated Regimes

Let us assume that the system contains an integer number of particles with 〈n̂i 〉 =
n0. At a sufficiently large interaction compared with the hopping amplitude, local
fluctuations of n̂i from the mean density are strongly suppressed. Therefore, low-
energy properties of the system can be described by an effective model

Ĥn0
eff = Pn0ĤBHP−1

n0 , (2.36)

where Pn0 is a projection operator eliminating high-energy Fock states |n0 + α〉 for
|α| > 1 from the complete Hilbert space. The remaining states, which effectively
describe the low-energy phenomena, can be represented by three Schwinger bosons
[32, 33, 62, 63],

|n0 + 1〉 j ≡ t̂†1, j |vac〉, |n0〉 j ≡ t̂†0, j |vac〉, |n0 − 1〉 j ≡ t̂†−1, j |vac〉, (2.37)
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where |vac〉 is the vacuum of new bosons. The new bosons fulfill the commutation
relations

[t̂α,i , t̂
†
α′, j ] = δα,α′δi, j , [t̂α,i , t̂α′, j ] = [t̂†α,i , t̂

†
α′, j ] = 0. (2.38)

In order to eliminate the unphysical states such as t̂†1,i t̂
†
0,i |vac〉, we assume that these

operators obey a local holonomic constraint

1∑

α=−1

t̂†α,i t̂α,i = 1̂, (2.39)

where 1̂ on the righthand side is the identity operator in the reduced Hilbert subspace.
In the projected Hilbert space, each of local operator that constitutes the model

Hamiltonian, âi , â
†
i , and δn̂i = n̂i − n0, reduces to a simple form represented by

the constrained Schwinger bosons t̂α , t̂†α (α = −1, 0, 1). In terms of the bosons, the
operators read

Pn0 â
†
i P−1

n0 = √
n0 + 1t̂†1,i t̂0,i + √

n0 t̂
†
0,i t̂−1,i ,

Pn0 âiP−1
n0 = √

n0 + 1t̂†0,i t̂1,i + √
n0 t̂

†
−1,i t̂0,i ,

Pn0δn̂iP−1
n0 = t̂†1,i t̂1,i − t̂†−1,i t̂−1,i .

Here, let us introduce pseudospin-1 operators of the Schwinger bosons, which are
defined by

Ŝ+
i = √

2(t̂†1,i t̂0,i + t̂†0,i t̂−1,i ), Ŝ−
i = √

2(t̂†0,i t̂1,i + t̂†−1,i t̂0,i ), Ŝzi = t̂†1,i t̂1,i − t̂†−1,i t̂−1,i .

(2.40)

It is easy to see that these operators satisfy the standard SU(2) commutation relations
such that

[Ŝ+
i , Ŝ−

j ] = 2Ŝzi δi, j , [Ŝzi , Ŝ±
j ] = ±Ŝ±

i δi, j . (2.41)

In addition, there exists a conserved Casimir operator, which commutes all of the
ingredients of the algebra, such that

∑
α=x,y,z(Ŝ

α
j )

2 = 2 ≡ S(S + 1), where Ŝ±
j =

Ŝx
j ± i Ŝ y

j . Using the pseudospin representation, we obtain

Pn0 â
†
i P−1

n0 =
√
n0
2

(1 + δν Ŝzi )Ŝ
+
i ,

Pn0 âiP−1
n0 =

√
n0
2
Ŝ−
i (1 + δν Ŝzi ), (2.42)

Pn0δn̂iP−1
n0 = Ŝzi ,
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where δν = √
1 + 1/n0 − 1. The results of the first and second equations have an

explicit dependence on the projection center n0. On the other hand, the righthand
side of the final equation does not depend on n0, so that it has the same form for any
n0.

2.5.2 Effective Pseudospin-1 Model at a High-Filling Limit

Applying the mapping formula (2.42), let us derive an explicit form of the strongly-
interacting effectivemodel at a large-occupation limit [32]. At n0 	 1, the difference
between

√
n0 + 1 and

√
n0 vanishes and δν approaches to zero. In this limit, the

creation and annihilation operators of the original bosons are effectively written in
the form

Pn0 â
†
i P−1

n0 ≈
√
n0
2
Ŝ+
i , Pn0 âiP−1

n0 ≈
√
n0
2
Ŝ−
i . (2.43)

Substituting these results into Eq. (2.36), we obtain an effective pseudospin-1
model [32],

Ĥn0	1
eff = − Jn0

2

∑

〈i j〉
Ŝ+
i Ŝ

−
j + U

2

∑

i

(Ŝzi )
2 − B

∑

i

Ŝzi , (2.44)

where B = μ is the uniform magnetic field coupling with the z-component of the
pseudospins. The XY spin exchange, on-site single-ion anisotropy, and magnetic
coupling terms correspond to the hopping, onsite-interaction, and chemical potential
terms in the original Bose–Hubbard model, respectively.

The effective model (2.44) was first obtained by Altman and Auerbach in 2002
[32]. They used this model to investigate dynamical properties of superfluid Bose
gases with a large occupation, especially, oscillations of the superfluid order param-
eter in the vicinity of the Mott-insulator transition [32]. Furthermore, this model
has been utilized for examining universal aspects of adiabatic-limit dynamics near a
quantum phase transition [64], estimating damping rates of the Higgs and NGmodes
at finite temperatures and in three dimensions [62], and discussing the applicability
of the SU(3) truncated-Wigner approximation to ultracold gas systems [65].

An important feature of Eq. (2.44) is its explicit particle-hole symmetry at com-
mensurate filling, which corresponds to B = μ = 0. In the Schwinger-boson lan-
guage, this symmetry can be viewed as an invariance associated with an exchange
between t̂1 (particle) and t̂−1 (hole). In Sect. 2.5.5, we will derive an energy disper-
sion of elementary excitations around a mean-field ground state using a Holstein–
Primakoff expansion of the Schwinger bosons. There, we will see that the Higgs and
NG branches are completely decoupled at a quadratic level due to the
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particle-hole symmetry. Furthermore, such an explicit symmetry forbids interactions
associated with an odd number of the NGmode. It is worth noting that the relativistic
Klein–Gordon-type effective action can be derived through the spin-coherent-state
path-integral representation of the effective pseudospin-1 model at B = 0 [32].

2.5.3 Effective Pseudospin-1 Model at Low-Filling Rates

The high-filling model (2.44) does not correspond to typical experimental situations,
in which the filling factor is tuned to unity (see, e.g., Ref. [59]). For lower commen-
surate filling rates (n0 ∼ 1), we need to modify the spin exchange term [33] such
that

Hn0
eff = − Jn0

2

∑

〈i j〉
(1 + δνSzi )S

+
i S

−
j (1 + δνSzj ) + U

2

∑

i

(Szi )
2 − B

∑

i

Szi . (2.45)

The modified model (2.45) has no longer the explicit particle-hole symmetry seen
in the high-filling model even at commensurate filling rates. Note that δν measures
the deviation from the particle-hole symmetric point. In fact, when we make a limit
δν → 0, the modified effective model results in the particle-hole symmetric model
(2.44). The correction terms at low-filling rates were first discussed by Huber et al.
[33].

In Chap. 4, we use the low-filling effective model (2.45) to analyze some response
functions in the 3D Bose–Hubbard model at unit filling. Despite the absence of the
particle-hole symmetry at themicroscopic level, Eq. (2.45) is able to exhibit two inde-
pendent collective excitations, i.e., the Higgs and NG modes, within the quadratic
approximation of the Holstein–Primakoff expansion. This can be interpreted as that
the system attains an emergent particle-hole symmetry near the Mott-insulator tran-
sition.

2.5.4 Gutzwiller’s Variational Ansatz in the Reduced Hilbert
Space

Let us discuss the ground state of the projected effective model (2.45) within mean-
field approximation. To do that, we use Gutzwiller’s variational ansatz according to
Refs. [32, 33]. Our starting point is to define a variational wave function spanned in
the reduced Hilbert space [32, 33]:
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|�(θ, η, ϕ, χ)〉 =
∏

i

{
cos

(
θ

2

)
t̂†0,i+

eiηsin

(
θ

2

) [
eiϕsin

(χ

2

)
t̂†1,i + e−iϕcos

(χ

2

)
t̂†−1,i

]}
|vac〉,

(2.46)

where θ ∈ [0, π ], η ∈ [−π/2, π/2], ϕ ∈ [0, 2π ], and χ ∈ [0, π ] are thevariational
parameters. We note that this wave function at θ = 0 describes the Mott-insulating
state of n0 filling factor with no fluctuation, i.e.

∏
i t̂

†
0,i |vac〉. In the superfluid phase,

θ �= 0 mixes the mean filling state t̂†0,i with the particle and hole fluctuations t̂
†
1,i and

t̂†−1,i . Hence, it plays a role of the order parameter strength.
In the superfluid phase (θ �= 0), the variational parameters are determined from

minimizing the mean energy density EMF = 〈�|Hn0
eff |�〉/M with respect to the vari-

ational parameters. Here, M is the total number of the lattice point. The explicit form
can be computed as

EMF =
[
1

2
+ μcosχ

]
sin2

(
θ

2

)

− J z

4
sin2θ

[
n0 + sin2

(χ

2

)
+ √

n0(1 + n0)sinχcos2η
]
. (2.47)

After effecting the variation of Eq. (2.47) with respect to the variational parameters,
we obtain amean-field ground-state energy E0(θmf) = EMF[θmf , 0, 0, χ(θmf)]where

tanχ(θ) = −2J z
√
n0(n0 + 1)[1 − sin2(θ/2)]

2μ + J z[1 − sin2(θ/2)] , (2.48)

and θmf is determined such that it minimizes the function E0(θ). Using the optimized
wave function after the variation, we also obtain the order parameter � = 〈�|ai |�〉
and mean density n̄ = 〈�|ni |�〉 of the ground state as follows:

� = 1

2
sinθmf

[√
n0 + 1sin

(χmf

2

)
+ √

n0cos
(χmf

2

)]
, (2.49)

n̄ = n0 − sin2
(

θmf

2

)
cosχmf , (2.50)

χmf = χ(θmf). (2.51)

It is easy to obtain an analytical form of θmf at commensurate filling rates. In this
case, χmf turns out to be χmf = π/2 [see Eq. (2.51)]. Minimizing EMF(θ, 0, 0, π/2)
with respect to θ , we obtain

θmf = sin−1

(√
1 − (J z)−2(

√
n0 + 1 + √

n0)−4

)
, (2.52)
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and the corresponding chemical potential at n̄ = n0 reads

μn0 = −1

4

[
z J + (

√
n0 + 1 + √

n0)
−2

]
. (2.53)

Furthermore, it is worth noting that at χmf = π/2 the ground state is particle-hole
symmetric. This is because the corresponding wave function (2.46) contains t†1,i and

t†−1,i components with equal weights at each site.
From the Ginzburg–Landau expansion of EMF of the ground state with respect

to the order parameter � = 〈�|ai |�〉, we can determine the phase-boundary of the
superfluid to insulator transition [33]. Now we introduce a dimensionless parameter
u = U/(4Jn0z) measuring the distance from the critical point at the commensurate
filling rate. The critical value of the superfluid to insulator transition within the
mean-field approximation [33] is

uc = 1

4n0
(
√
n0 + 1 + √

n0)
2. (2.54)

In the limit of n0 → ∞, the critical value uc approaches 1. At the unit filling rate
n0 = 1, uc = (

√
2 + 1)2/4 ≈ 1.457. The same result has been obtained from the

decoupling approximation for the Bose–Hubbard model (see Sect. 2.3.1). The exact
critical value at the unit filling rate has been numerically computed as uc = 1.22(2)
by the quantum Monte-Carlo method for the 3D Bose–Hubbard model in Ref. [22].
In Chap. 4, we mainly use the mean-field result of Eq. (2.54) to be consistent with
our analysis on the mean-field ground state.

2.5.5 Elementary Excitations Around the Gutzwiller Wave
Function

Using the effective pseudospin-1 model and Gutzwiller’s wave function, we discuss
elementary excitations around the Mott-insulator and superfluid states, respectively.
For simplicity, we focus on the high-filling limit where the calculation is simple due
to the particle-hole symmetry of the effective model. The low-filling generalization
will be presented in Chap. 4 because it is closely related with our main analysis of
this Thesis. In this subsection, we assume the commensurate case B = 0 in order to
discuss the Higgs and NG modes. The following discussion is basically a review of
Ref. [32].

To obtain the energy dispersion of elementary excitations in the superfluid phase
(i.e., the amplitude and phase fluctuations), let us introduce a creation operator of the
mean-field ground state |�〉 ≡ ∏

i b̂
†
0,i |vac〉 and define a canonical transformation
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b̂†0,i = c1 t̂
†
0,i + s1

[
s2 t̂

†
1,i + c2 t̂

†
−1,i

]
,

b̂†1,i = s1 t̂
†
0,i − c1

[
s2 t̂

†
1,i + c2 t̂

†
−1,i

]
, (2.55)

b̂†2,i = c2 t̂
†
1,i − s2 t̂

†
−1,i ,

where the coefficients are s1 = sin(θmf/2), c1 = cos(θmf/2), s2 = sin[χ(θmf)/2],
and c2 = cos[χ(θmf)/2]. θmf( �= 0) denotes the optimal value of θ for the ground
state. b̂†1,i describes the amplitude fluctuation of the order parameter on the ground

state while b̂†2,i describes the phase fluctuation. These new operators fulfill the same
commutation relations as the old operators t̂α,i . In addition, the transformation retains
the constraint (2.39) such that

2∑

m=0

b̂†m,i b̂m,i = 1̂. (2.56)

As a next step, we simplify the effective model by means of the Holstein–
Primakoff (HP) expansion [63, 66]. Since themean-field ground state can be regarded
as a Bose–Einstein condensate of the constrained boson b̂0,i , we can eliminate b̂0,i
by an expansion with respect to the fluctuations (spin waves) b̂1,i and b̂2,i :

b̂†m,i b̂0, j = b̂†m,i

√
1 − b̂†1, j b̂1, j − b̂†2, j b̂2, j , (2.57)

≈ b̂†m,i − 1

2
b̂†m,i b̂

†
1, j b̂1, j − 1

2
b̂†m,i b̂

†
2, j b̂2, j + · · · .

When the expansion is stopped up to quadratic order, we obtain a free Hamiltonian,
which describes the excitations within the non-interacting limit. Interaction or non-
linear effects beyond the quadratic order approximation will be discussed in Chap. 4.

The quadraticHamiltonian is diagonalized through the standardBogoliubov trans-
formation [67]. In the high-filling limit, where the effective model has the explicit
particle-hole symmetry, the transformation can be carried out independently in each
branch because the amplitude and phase sectors are completely decoupled from each
other. Notice that the HP expansion gives rise to no violation of such a symmetry.
We rotate the operator basis by using a canonical transformation defined by

b̂m,k = um,kβ̂m,k + v∗
m,−kβ̂

†
m,−k,

b̂†m,k = u∗
m,−kβ̂

†
m,−k + vm,kβ̂m,k, (2.58)

where m ∈ {1, 2}. Here we have introduced the Fourier transformation of the fluctu-
ation operators b̂1,i and b̂2,i ,



2.5 Hilbert-Space Truncation and Effective Pseudospin-1 Models 27

Fig. 2.3 Higgs (blue-solid) and NG (red-dashed) energy dispersions at the high-filling limit. The
vertical axis represents the energy dispersions (Jn0z = 1), whereas the horizontal axis does the
wave-number vector in one dimension (dlat = 1). Two different results are calculated at a u = 0.9
and b u = 1, respectively

b̂†m,i = 1√
M

∑

k∈�0

b̂†m,ke
−ik·ri , b̂m,i = 1√

M

∑

k∈�0

b̂m,ke
ik·ri .

The notation
∑

k∈�0
denotes that the momentum k runs over the cubic-shaped first

Brillouin zone �0 ≡ [−π, π ]3. The free coefficients of rotation, um,k and vm,k,
should satisfy a condition |um,k|2 − |vm,k|2 = 1. Then, the new operator β̂m,k ful-
fills the canonical commutation relation [β̂m,k, β̂

†
m ′,k′ ] = δm,m ′δk,k′ . When we choose

the coefficients such that

u1,k =
√

2 − u2γk

4
√
1 − u2γk

+ 1

2
, v1,k = sgn(γk)

√
2 − u2γk

4
√
1 − u2γk

− 1

2
, (2.59)

u2,k =
√

2 − γk

4
√
1 − γk

+ 1

2
, v2,k = −sgn(γk)

√
2 − γk

4
√
1 − γk

− 1

2
, (2.60)

where sgn(x) is the sign function, then the quadratic Hamiltonian reads a diagonal-
ized form

Ĥn0	1
eff ≈ const. +

∑

m=1,2

∑

k∈�0

Em,kβ̂
†
m,kβ̂m,k. (2.61)

The band dispersions E1,k (Higgs) and E2,k (NG) are given by

E1,k = 2Jn0z
√
1 − u2γk, E2,k = Jn0z(1 + u)

√
1 − γk, (2.62)

where γk = ∑d
i=1 cos(kidlat)/d. Figure 2.3 depicts the energy dispersions as a func-

tion of k in one dimension (d = 1). As shown in Fig. 2.3a, the Higgs dispersion has
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Fig. 2.4 Particle (blue-solid) and hole (red-dashed) energy dispersions at the high-filling limit.
The vertical axis represents the energy dispersions (Jn0z = 1), whereas the horizontal axis does
thewave-number vector in one dimension (dlat = 1). Twodifferent results are calculated at a u = 1.1
and b u = 1, respectively

a finite energy gap 	̃ = 2Jn0z
√
1 − u2 at k = 0 (apart from u = uc = 1) while the

NG one is gapless at that point. Moreover, it is clearly seen that at the critical point
u = uc = 1, the energy gap 	̃ closes and these dispersions coincide with each other.

Similarly, we can derive the energy dispersion of the particle-hole excitations in
the Mott-insulator state. To do that, we expand t̂0,i in t̂1,i and t̂−1,i via the constraint∑

m t̂†mt̂m = 1̂ within the quadratic order, i.e.,

t̂0,i =
√
1 − t̂†1,i t̂1,i − t̂†−1,i t̂−1,i

≈ 1 − 1

2
t̂†1,i t̂1,i − 1

2
t̂†−1,i t̂−1,i + · · · . (2.63)

The diagonalization of the resulting quadratic Hamiltonian is also simple because
the particle and hole sectors are completely decoupled from each other. After simple
calculations on the basis of the Bogoliubov transformation, we finally arrive at the
particle and hole dispersions [32], �ωp and �ωh , which are written as

�ωp = �ωh = U

2

√
1 − u−1γk. (2.64)

These dispersions have the entirely same form due to the commensurate filling (B =
0). In Fig. 2.4, we show �ωp and �ωh as a function of k in one dimension. For u > uc,
the excitation energies have a finite gap corresponding to the incompressibility of
the Mott-insulator phase [Fig. 2.4a]. In contrast, the gap vanishes at u = uc = 1
[Fig. 2.4b].

Within the quadratic approximation of the HP expansion, the Higgs and NG
modes can be regarded as well-defined eigenstates because there is no transition
among different levels. However, including further contributions of the expansion,
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these modes are able to attenuate into other non-perturbed states with certain decay
rates. The stability of the Higgs mode against quantum and thermal fluctuations
mediated by the interactions is studied in Chap. 4. There, we apply the HP expansion
to the high and low filling effective models, respectively, in order to analyze some
response functions to external perturbations.
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Chapter 3
Phase Space Methods for Quantum
Dynamics

Abstract In this chapter, we review the phase-spacemethod,which represents quan-
tum systems using classical phase-space variables and quasi-probability distribution
functions. In Sect. 3.1, we provide a general overview of the phase-space method and
introduce the Wigner function for a quantum state and the Wigner–Weyl transform
of operators, especially in the coordinate-momentum phase space. In Sect. 3.2, we
formulate the phase-space representation of Bose fields using the Wigner function
spanned by the coherent-state basis. In Sect. 3.3, we represent quantum dynamics
of Bose fields by means of the time-dependent Wigner function and discuss the
truncated-Wigner semiclassical approximation through two different ways.

3.1 Introduction

Phase-space representation of quantum systems provides a useful and interestingway
to express general quantum states of quantized particles or fields using a distribution
function in a classical phase space. For instance, a single-particle quantum state
described by a density operator ρ̂ can be represented by using aWigner function [1],
which is a distribution function defined in the coordinate-momentum phase space
(x, p) ∈ R

2:

W (x, p) =
∫ ∞

−∞
dy

〈
x − y

2

∣∣∣ ρ̂
∣∣∣x + y

2

〉
e

i
�
p·y, (3.1)

where |x〉 (〈x |) is a ket (bra) vector with a position x . Unlike standard distribution
functions encountered in classical statistical mechanics, the Wigner function is not
positive definite. For such a reason, Eq. (3.1) is often termed a quasi-probability
distribution function (for reviews of the Wigner function, see e.g. Refs. [2–5]).
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The Wigner function allows us to express the quantum average of arbitrary oper-
ators using entirely classical objects. Let us consider the quantum average of an
arbitrary operator �̂(x̂, p̂) with respect to the density operator ρ̂, which is given by

〈�̂(x̂, p̂)〉 = Tr
{
ρ̂�̂(x̂, p̂)

}
. (3.2)

This can be translated into a phase-space integration form, where a classical func-
tion corresponding to �̂(x̂, p̂) is weighted with the coordinate-momentum Wigner
function [2]:

〈�̂(x̂, p̂)〉 = 1

2π�

∫
dxdpW (x, p)�W (x, p). (3.3)

Here, the classical function �W (x, p) is referred to as the Wigner–Weyl transform
[2] of �̂(x̂, p̂) (a.k.a. Weyl symbol) defined by

�W (x, p) =
∫ ∞

−∞
dy

〈
x − y

2

∣∣∣ �̂
∣∣∣x + y

2

〉
e

i
�
p·y . (3.4)

Notice that the Wigner function is nothing else but the Weyl symbol of the density
operator ρ̂. The Weyl symbol is closely related with the Weyl-ordering rule for
operator products of x̂ and p̂ [5, 6]. The above discussion for the single particle can
be generalized into multi-particle cases straightforwardly.

In the so called Wigner (or Wigner–Weyl) representation based on the quasi-
probability distribution function, the dynamics of the density operator in the Hilbert
space are translated into those of the Wigner function in the phase space [2]. The
corresponding phase-space equation is described by a generalized Poisson bracket,
i.e., the so called Moyal bracket [7]. For two arbitrary operators Â and B̂, the Moyal
bracket is defined by

{AW , BW }M.B. = 2

�
AW (x, p)sin

[
�

2
�cm

]
BW (x, p), (3.5)

where

�cm =
←−
∂

∂x

−→
∂

∂p
−

←−
∂

∂p

−→
∂

∂x
(3.6)

is the symplectic operator in the coordinate-momentum space. If one takes a classical
limit � → 0, it is reduced to the standard Poisson bracket. As we will see later,
the Moyal bracket is nothing else but the Weyl symbol of a commutator of two
operators [ Â, B̂], i.e., ([ Â, B̂])W (x, p). Using theMoyal bracket, we can write down
the equation of motion of the Wigner function as follows:
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∂W

∂t
= {HW ,W }M.B.

= 2

�
HW sin

[
�

2
�cm

]
W, (3.7)

where HW is a classical function mapped from a Hamiltonian operator through the
Wigner–Weyl transform.

A similar representation by use of theWigner function can bemade for a system of
Bose fields describing, e.g., photons or bosonic atoms [3, 4]. There, it is convenient to
span the phase-space distribution function bymeans of the coherent state basis [2, 8].
The coherent state introduces a complex classical field as a phase-spacevariable. Such
a complex field corresponds to a natural classical limit for Bose fields, especially
for coherent bosons. The time evolution of the coherent-state Wigner function is
described by a similar equation to Eq. (3.7) [5].

Our main purpose of this chapter is to provide the coherent-state Wigner repre-
sentation of general Bose fields and show how to utilize it for describing quantum
dynamics of the systems. In particular,we focus on auseful fact thatwithin a semiclas-
sical regime one can reduce the computational difficulty in simulating the quantum
dynamics. Indeed, when the system is in a nearly classical limit, the dynamics of
the system are approximated by a set of deterministic Hamilton or Gross–Pitaevskii
trajectories of the classical field, whose initial conditions are weighted with the ini-
tial Wigner function. This treatment is often referred to as the truncated-Wigner
approximation (TWA) in quantum optics and other fields [5, 9]. Since the number
of the classical equations of motion is proportional to the total mode number or sys-
tem size, the TWA is applicable even to macroscopic quantum many-body systems,
to which exact numerical methods are inaccessible due to the exponentially-large
Hilbert space.

In the past two decades, TWA or related semiclassical frameworks were widely
used to explore non-equilibrium phenomena of isolated Bose gases trapped by opti-
cal lattices [5, 10–23], quantum spin systems [5, 24–27], open quantum systems
[4, 28–32], spin-boson models [33–35], and interacting fermions [36–38]. In ear-
lier works on interacting bosons in optical lattices [10, 11, 13, 19, 20, 22], it was
argued that in a weakly interacting regime the semiclassical approach can be used to
describe the time evolution induced by a sudden quench from a Mott-insulator state.
However, the application of such semiclassical approaches to the three-dimensional
(3D) case at unit filling, which is the situation realized in the experiment [39], has
not been demonstrated in practice. One of the goals of this Thesis is to apply a
TWAmethod, which was previously used to study dynamics of the one-dimensional
(1D) Bose–Hubbard at a large-filling factor [10, 11, 13], to the experimental setup
of Ref. [39] that the 3D Bose–Hubbard model is quenched from a singly-occupied
Mott-insulator state. The details of the numerical simulation and direct comparison
with the experimental data will be presented in Chap. 5.
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3.2 Wigner Representation of Bose Fields

3.2.1 Coherent-State Phase Space Representation

Let us consider a single-modeBose field described by boson annihilation and creation
operators, â and â†. An important step to build a phase-space representation of the
Bose field is to introduce the coherent state [8], which is given by

|α〉 = D̂(α)|0〉, 〈α| = 〈0|D̂†(α) = 〈0|D̂(−α), (3.8)

where α ∈ C is a complex number, D̂(α) = eαâ†−α∗â is the so called displacement
operator [4], and |0〉 represents the vacuum state of the Bose field. This vector is
normalized as 〈α|α〉 = 1. The displacement operator is a unitary operator, and it
yields a unitary transformation that adds an offset to the canonical field operators
such that â → â + α, hence,

D̂†(α)â D̂(α) = â + α, D̂†(α)â† D̂(α) = â† + α∗. (3.9)

Because of this property, the coherent state is found to be a right (left) eigenstate of
the field operator â (â†),

â|α〉 = α|α〉, 〈α|â† = α∗〈α|, (3.10)

and the number α gives the resulting complex eigenvalues. This vector produces an
over-complete basis to span the Hilbert space and satisfies a completeness relation

∫
d2α

π
|α〉〈α| = 1̂, (3.11)

where d2α/π ≡ dRe [α] dIm [α] /π . The conjugated pair (α, α∗) of the coherent-
state index plays a role of natural phase-space variables for the Bose field in the
following discussions.

The coherent state basis makes key ingredients for representing the Bose field
using phase-space variables, i.e., the Weyl symbol of operators and Wigner function
for quantum states. For the single-mode Bose field, the Weyl symbol of an arbitrary
operator �̂ = �̂(â, â†) is defined as

�W (α, α∗) = 1

2

∫
dηdη∗

〈
α − η

2

∣∣∣ �̂
∣∣∣α + η

2

〉
e

1
2 (η∗α−α∗η), (3.12)

where dηdη∗ = d2η/π . When we insert a density operator ρ̂ into �̂, it results in the
corresponding Wigner function
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W (α, α∗) = 1

2

∫
dηdη∗

〈
α − η

2

∣∣∣ ρ̂
∣∣∣α + η

2

〉
e

1
2 (η∗α−α∗η). (3.13)

Using these classical functions, the quantum average of �̂ with respect to ρ̂, i.e.,
〈�̂〉 = Tr[ρ̂�̂], is written as

〈�̂〉 =
∫

dαdα∗�W (α, α∗)W (α, α∗). (3.14)

This equation corresponds to Eq. (3.3) in the coordinate-momentum representation.
The detailed derivation of Eq. (3.14) will be given in Sect. 3.2.4.

Themulti-mode generalization of Eqs. (3.12)–(3.14) is straightforward:When the
Bose field possesses an M-number of distinct modes, then the corresponding Weyl
symbol and Wigner function are generalized into

�W (α,α∗) = 1

2M

∫
dη∗dη

〈
α − η

2

∣∣∣ �̂
∣∣∣α + η

2

〉
e

1
2 (η∗·α−α∗·η), (3.15)

W (α,α∗) = 1

2M

∫
dη∗dη

〈
α − η

2

∣∣∣ ρ̂
∣∣∣α + η

2

〉
e

1
2 (η∗·α−α∗·η), (3.16)

where α = (α1, α2, . . . , αM) indicates a point in the 2M-dimensional phase space
anddηdη∗ = ∏M

i=1 dηi dη∗
i = ∏M

i=1[d2ηi/π ]. Themultiple coherent state |α〉 iswrit-
ten as a product state of the single-mode coherent state:

|α〉 = D̂1(α1)D̂2(α2) · · · D̂M(αM)|0, 0, . . . , 0〉 =
M⊗
i=1

D̂i (αi )|0〉, (3.17)

where D̂i (αi ) ≡ eαi â
†
i −α∗

i âi and [D̂i (αi ), D̂ j (α j )] = 0 for i 
= j . Thus, we obtain a
general formula of the phase-space averaging:

〈�̂〉 =
∫

dαdα∗�W (α,α∗)W (α,α∗). (3.18)

3.2.2 Weyl Symbols and Weyl Ordering

To illustrate the mapping of Eq. (3.12) from operators to classical functions, we
calculate Weyl symbols of operators in practice. First, let us consider an operator
where the canonical pairs are decoupled such that �̂(â, â†) = A(â) + B(â†). When
we choose A(x) = axn and B(x) = bxm , the corresponding Weyl symbol is given
as

(�̂)W (α, α∗) = aαn + b(α∗)m . (3.19)
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Indeed, it can be confirmed that

[ân]W (α, α∗) = 1

2

∫
d2η

π

〈
α − η

2

∣∣∣ ân
∣∣∣α + η

2

〉
e

1
2 (η∗α−α∗η)

= 1

2

∫
d2η

π

(
α + η

2

)n
e− 1

2 |η|2

= αn,

[(â†)m]W (α, α∗) = 1

2

∫
d2η

π

(
α∗ − η∗

2

)m

e− 1
2 |η|2

= (α∗)m .

To calculate them, we have used two relations, i.e., the overlap between |α〉 and |β〉

〈α|β〉 = e− 1
2 |α|2− 1

2 |β|2+α∗β, (3.20)

and a set of Gaussian integrals,

[1]η = 1, [|η|n]η = 2nn!, [ηn]η = [(η∗)m]η = 0, (3.21)

where [ f (η, η∗)]η = 1
2

∫ d2η

π
f (η, η∗)e− 1

2 |η|2 . Thus, for the decoupled operators, the
Weyl symbol can be obtained from replacing the canonical operators with corre-
sponding classical numbers: (α̂, α̂†) → (α, α∗).

The same operational manual based on such a replacement is also true when the
operator of interest is fully symmetrized with respect to the canonical variables. To
see that, let us consider a symmetrized operator

â†â + ââ†

2
. (3.22)

UsingEqs. (3.12), (3.20), and (3.21),wefind that the resultingWeyl symbol coincides
with the classical number obtained from the replacement into Eq. (3.22):

1

2
[â†â + ââ†]W (α, α∗) = α∗α. (3.23)

This property implies the standard Weyl-ordering rule of operators that a c-number
product constructed from some phase-space variables corresponds to a fully-
symmetrized product of operators.

In contrast, if Eq. (3.22) is not symmetrized, for instance, if it is written as â†â or
ââ†, then, there arises a constant factor in addition to α∗α:

[â†â]W (α, α∗) = α∗α − 1

2
, [ââ†]W (α, α∗) = αα∗ + 1

2
. (3.24)
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The factors follow from the non-commutativity of the canonical variables [â, â†] =
1. Indeed, when we rewrite them as a fully symmetrized form, and perform the
replacement, the same results are recovered:

â†â = â†â + ââ†

2
+ 1

2
[â†, â] → α∗α − 1

2
,

ââ† = â†â + ââ†

2
+ 1

2
[â, â†] → α∗α + 1

2
.

3.2.3 Moyal Products and Bopp Operators

In the coherent-state phase space, we can also define theMoyal product between two
classical functions. For arbitrary operators Â and B̂, the Weyl symbol of the product
of them, ( Â B̂)W , is expressed as follows [5]:

( Â B̂)W (α, α∗) ≡ AW (α, α∗)exp
[
1

2
�c

]
BW (α, α∗) (3.25)

= BW (α, α∗)exp
[
−1

2
�c

]
AW (α, α∗), (3.26)

where �c is the symplectic operator in the coherent phase space, given by

�c =
←−
∂

∂α

−→
∂

∂α∗ −
←−
∂

∂α∗

−→
∂

∂α
. (3.27)

The symplectic operator is a formal representation of the Poisson bracket in the
complex phase space between AW (α, α∗) and BW (α, α∗):

AW�c BW = ∂AW

∂α

∂BW

∂α∗ − ∂AW

∂α∗
∂BW

∂α
= {AW , BW }P.B. . (3.28)

Using the Moyal product (3.26), it is easy to obtain again the result of Eq. (3.24):

(â†â)W (α, α∗) = α∗
[
1 + 1

2
�c + · · ·

]
α = α∗α − 1

2
,

(ââ†)W (α, α∗) = α

[
1 + 1

2
�c + · · ·

]
α∗ = α∗α + 1

2
.

The concept of the Moyal product leads to the Moyal bracket, which is defined
as a commutator associated with the Moyal product
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{AW , BW }M.B. ≡ AW 
 BW − BW 
 AW

= 2AW sinh

[
1

2
�c

]
BW . (3.29)

Here we have introduced the star-product notation, AW 
 BW = ( Â B̂)W , for indi-
cating the Moyal product. We note that the Moyal bracket is equivalent to the Weyl
symbol of a commutator [ Â, B̂], i.e.,

{AW , BW }M.B. = ([ Â, B̂])W . (3.30)

If we take a classical limit, the Moyal bracket reduces to the Poisson bracket

{AW , BW }M.B. ≈ {AW , BW }P.B. . (3.31)

This limit is formally equivalent to eliminating higher-order terms of expansion of
Eq. (3.29) in �c.

It is also possible to calculateWeyl symbols usingBoppoperators for the canonical
variables [4, 5]. For the Bose operators â and â†, the corresponding right-derivative
Bopp operators are introduced as

â → α + 1

2

∂

∂α∗ , â† → α∗ − 1

2

∂

∂α
. (3.32)

Using theBopp operators, theWeyl symbols of â†â and ââ† are calculated as follows:

â†â1̂ →
(

α∗ − 1

2

∂

∂α

) (
α + 1

2

∂

∂α∗

)
1 = α∗α − 1

2
,

ââ†1̂ →
(

α + 1

2

∂

∂α∗

) (
α∗ − 1

2

∂

∂α

)
1 = α∗α + 1

2
.

Moreover, we can write down left-derivative Bopp operators instead of the right-
derivative ones, which are given by

â → α − 1

2

←−
∂

∂α∗ , â† → α∗ + 1

2

←−
∂

∂α
. (3.33)

A similar calculation to the above is performed as follows:

1̂â†â → 1

(
α∗ + 1

2

←−
∂

∂α

) (
α − 1

2

←−
∂

∂α∗

)
= α∗α − 1

2
,

1̂ââ† → 1

(
α − 1

2

←−
∂

∂α∗

) (
α∗ + 1

2

←−
∂

∂α

)
= α∗α + 1

2
.
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It is important to note that the Bopp-operator replacement is also valid for the time-
dependent Heisenberg operators within a semiclassical limit (see Ref. [5]). The time-
dependent Bopp operator is very useful to derive semiclassical representations of
non-equal time correlation functions of the field operators.

3.2.4 Displacement Operator Expansion

It is convenient to expand an arbitrary operator Â with respect to the displacement
operator D̂(α) [2, 40] as

Â =
∫

d2α

π
χA(α)D̂(α), (3.34)

in which the coefficient χA(α) is referred to as the characteristic function of Â. Since
the displacement operator satisfies relations

D̂(α)D̂(β) = e
1
2 (αβ∗−α∗β) D̂(α + β), (3.35)

Tr[D̂(α)D̂(β)] = πδ(2)(α + β), (3.36)

the characteristic function is given by

χA(α) = Tr
[
ÂD̂†(α)

]
. (3.37)

Here we introduced the delta function in the complex plane given by

δ(2)(α) = 1

π

∫
d2ξ

π
eαξ∗−ξα∗

. (3.38)

Notice that this expansion is similar with the usual expansion of a vector in a linear
space with respect to an adequate basis. In particular, the trace operation implies an
inner product between two vectors D̂(α) and D̂†(β).

Starting from the displacement operator expansion (3.34),we canderive the phase-
space representations in the previous subsections, which were given with no proof,
and some useful formulae. Let us consider the Weyl symbol of Eq. (3.34):

AW (α) =
∫

d2ξ

π
χA(ξ)[D̂(ξ)]W (α). (3.39)

TheWeyl symbol of D̂(ξ) can be obtained from replacing the field operators with the
corresponding complex numbers because the operator is written as theWeyl-ordered
form. Therefore, AW (α) reads
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AW (α) =
∫

d2β

π
χA(β)eβα∗−β∗α. (3.40)

If we substitute Eq. (3.34) into Eq. (3.12), we are able to obtain again this result.
Indeed, it is checked that

AW (α) = 1

2

∫
d2η

π

d2ξ

π
χA(ξ)

〈
α − η

2

∣∣∣ D̂(ξ)

∣∣∣α + η

2

〉
e

1
2 (η∗α−α∗η)

= 1

2

∫
d2η

π

d2ξ

π
χA(ξ)eξα∗−ξ∗α− 1

2 |η+ξ |2

= 1

2

∫
d2ξ

π

[∫
d2η

π
e− 1

2 |η|2− 1
2 (η∗ξ+ξ∗η)

]
e− 1

2 |ξ |2χA(ξ)eξα∗−ξ∗α

=
∫

d2ξ

π
χA(ξ)eξα∗−ξ∗α. (3.41)

In the last equality, we have performed a complex Gauss integration with respect to
η [see, e.g., Eq. (3.52)]. Therefore, Eq. (3.40) gives another definition of the Weyl
symbol of operators.

Next we express the trace of two arbitrary operators, Tr[ Â B̂], using the classical
functions with the phase-space integration. Substituting Eq. (3.34) into the expres-
sion, it is found that

Tr[ Â B̂] =
∫

d2α

π

d2β

π
χA(α)χB(β)Tr[D̂(α)D̂(β)]

=
∫

d2α

π

d2β

π
χA(α)χB(β) · πδ(2)(α + β)

=
∫

d2α

π
AW (α)BW (α). (3.42)

If we insert Â = �̂ and B̂ = ρ̂, then Eq. (3.14) is recovered. In addition, this relation
allows the characteristic function χA to be rewritten as a function of AW :

χA(α) =
∫

d2ξ

π
AW (ξ)e−αξ∗+α∗ξ . (3.43)

Let us compute the Weyl symbol of a product of two arbitrary operators Â and
B̂, i.e., Â B̂. Using Eqs. (3.34), (3.38), and (3.42), we can perform the following
calculations:
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( Â B̂)W (α) =
∫

d2η

π

d2ξ

π
χA(η)χB(ξ)[D̂(η)D̂(ξ)]W (α)

=
∫

d2η

π

d2ξ

π
χA(η)χB(ξ)e

1
2 (ηξ∗−η∗ξ)e(η+ξ)α∗−(η∗+ξ∗)α

=
∫

d2η

π

d2ξ

π

d2α0

π

d2β0

π
AW (α0)BW (β0)

× e−ηα∗
0+η∗α0−ξβ∗

0+ξ∗β0e
1
2 (ηξ∗−η∗ξ)e(η+ξ)α∗−(η∗+ξ∗)α

=
∫

d2α0

π

d2η

π
AW (α0)BW (α − η/2)eη(α∗−α∗

0 )−η∗(α−α0).

Taking a transformation η → −2α0 − σ + 2α under the integration of α0, we obtain

( Â B̂)W (α) =
∫

d2α0d2σ

π2
AW (α0)BW (α0 + σ/2)eσ ∗(α−α0)−σ(α∗−α∗

0 ). (3.44)

It is also possible to express this equation such that σ appears in the argument of
AW (α):

( Â B̂)W (α) =
∫

d2α0d2σ

π2
AW (α0 − σ/2)BW (α0)e

σ ∗(α−α0)−σ(α∗−α∗
0 ). (3.45)

Similarly, we can obtain the Weyl symbol of B̂ Â:

(B̂ Â)W (α) =
∫

d2α0d2σ

π2
AW (α0 + σ/2)BW (α0)e

σ ∗(α−α0)−σ(α∗−α∗
0 ), (3.46)

=
∫

d2α0d2σ

π2
AW (α0)BW (α0 − σ/2)eσ ∗(α−α0)−σ(α∗−α∗

0 ). (3.47)

Thus, the permutation of Â and B̂ leads to the sign inversion of σ in the argument
of AW or BW .

If we expand BW (α0 + σ/2) with respect to σ such that

BW (α0 + σ/2) = BW (α0) + σ

2

∂BW (α0)

∂α0
+ σ ∗

2

∂BW (α0)

∂α∗
0

+ · · · , (3.48)

then, Eq. (3.44) reads

( Â B̂)W (α) =
∞∑

n,m=0

(−1)n

2m+nm!n!
∂m+n AW (α)

∂αm(∂α∗)n
∂m+n BW (α)

∂αn(∂α∗)m

= AW (α)exp

[
1

2

(←−
∂

∂α

−→
∂

∂α∗ −
←−
∂

∂α∗

−→
∂

∂α

)]
BW (α).



42 3 Phase Space Methods for Quantum Dynamics

This is the derivation of the Moyal product given by Eq. (3.26). Furthermore, when
Â = â and B̂ is arbitrary, it follows from Eqs. (3.45) and (3.47) that

(â B̂)W (α) =
∫

d2α0d2σ

π2

(
α0 − σ

2

)
BW (α0)e

σ ∗(α−α0)−σ(α∗−α∗
0 )

=
∫

d2α0d2σ

π2

(
α0 + 1

2

∂

∂α∗

)
BW (α0)e

σ ∗(α−α0)−σ(α∗−α∗
0 )

=
(

α + 1

2

∂

∂α∗

)
BW (α), (3.49)

(B̂â)W (α) =
(

α − 1

2

∂

∂α∗

)
BW (α). (3.50)

Hence, theBoppoperators,whichwere introduced inSect. 3.2.3, are naturally derived
from the simple starting point of Eq. (3.34).

3.2.5 Wigner Functions

In the coherent-state basis, theWigner function exists as a quasi-probability distribu-
tion function in the complex-number phase space. Here, we present some examples
of theWigner functions for the Bose fields in the single-mode case. For reviews, see,
e.g., Refs. [2–5, 9].

We start from the vacuumstate denoted by ρ̂ = |0〉〈0|. UsingEq. (3.20), itsWigner
function Wvac = (|0〉〈0|)W reads

Wvac(α, α∗) = 1

2π

∫
d2ηe−|α|2− 1

4 |η|2e
1
2 (η∗α−α∗η). (3.51)

The integration with respect to η and η∗ can be performed directly by using the useful
relation reviewed in Ref. [41]

∫
d2ze−z∗wz+u∗z+z∗v = π

w
e

u∗v
w , (3.52)

where Re[w] > 0 and u∗ and v are independent complex numbers. Thus, we obtain
a Gaussian-form Wigner function with its variance σ = 1/2:

Wvac(α, α∗) = 2e−2|α|2 . (3.53)

As seen in Fig. 3.1a, it describes the vacuum noise of the Bose field due to quantum
fluctuations.

Similarly, we can also derive the Wigner function of the coherent state |α0〉 =
D̂(α0)|0〉. The Weyl symbol of the density operator |α0〉〈α0| is given by
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Fig. 3.1 Wigner functions of a the vacuum state and the coherent states with b α0 = √
2 and c

α0 = 2ei4π/3

Fig. 3.2 Wigner functions of the Fock states at a N = 1, b N = 4, and c N = 10, respectively.
The horizontal axis represents the radial direction of the phase space denoted by |α|

Wα0(α, α∗) = 2e−2|α−α0|2 . (3.54)

In Fig. 3.1,we showEq. (3.54)with different values ofα0.As expected fromEq. (3.8),
the central position of this distribution is shifted to α = α0 compared with that of the
vacuum Wigner function.

In contrast to the above examples, the Wigner function of Fock states takes neg-
ative values. Let us consider an N -particle Fock state given by

|N 〉 = 1√
N ! (â

†)N |0〉. (3.55)

Substituting |N 〉〈N | into the definition, the Wigner function is written as

WN (α, α∗) = 1

2N !π
∫

d2η

(
α∗ − η∗

2

)N (
α + η

2

)N
e−|α|2− 1

4 |η|2e(η∗α−α∗η)/2.

The exponential factor can be separated into two independent factors such that

exp

[
−1

4
|η|2 + 1

2
(η∗α − α∗η)

]
= e−|α|2e− 1

4 {η1−2iα2}2e− 1
4 {η2+2iα1}2 , (3.56)



44 3 Phase Space Methods for Quantum Dynamics

in which we have used η1 = Re[η], η2 = Im[η], α1 = Re[α], and α2 = Im[α]. Intro-
ducing new variables of integration as

z1 = η1

2
− iα2, z2 = η2

2
+ iα1, (3.57)

and noticing the fact that the integration of z1 (z2) over [−∞ − iα2,∞ − iα2]
([−∞ + iα1,∞ + iα1]) is equal to the integration along the real axis over [−∞,∞],
we can evaluate the integral as

WN (α, α∗) = 2

πN !e
−2|α|2

∫
d2η̃(2α∗ − η̃∗)N (2α + η̃)Ne−|η̃|2 ,

= 2

πN !e
−2|α|2

N∑
n=0

N∑
m=0

∫
d2η̃

N !(2α∗)N−n

(N − n)!n!
N !(2α)N−m

(N − m)!m! (−η̃∗)n(η̃)me−|η̃|2

= 2

π
e−2|α|2

N∑
n=0

N !(−1)n

(N − n)!2n!2 (4|α|2)N−n
∫

d2η̃|η̃|2ne−|η̃|2

= 2e−2|α|2(−1)N LN (4|α|2), (3.58)

where

LN (x) =
N∑

r=0

(−1)r
N !

(N − r)!(r !)2 x
r (3.59)

is the N th order Laguerre polynomial. Due to the property of the Laguerre poly-
nomial, the Wigner function of the Fock state is not positive for N > 0. At N = 0,
the function is positive because it corresponds to the vacuum state. In Fig. 3.2, we
present WN (α, α∗) at different N .

3.3 Quantum Dynamics in the Coherent-State Phase Space

In this section, we formulate dynamics of a system of Bose fields in terms of the
phase-space representation.When the system is isolated from external environments,
its real time dynamics are governed by the von-Neumann equation

i�
∂

∂t
ρ̂(t) = [Ĥ , ρ̂(t)], (3.60)

where Ĥ = Ĥ † denotes the Hamiltonian and the density operator ρ̂(t) describes the
quantum state of the system at time t . For pure states, the von-Neumann equation
reduces to the Schrödinger equation, which describes the time evolution of the wave
function |ψ(t)〉:
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i�
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉. (3.61)

The density operator or wave function is assumed to be normalized at t = 0 with
a condition Tr[ρ̂(0)] = 1 or 〈ψ(0)|ψ(0)〉 = 1. Since the time evolution described
by Eq. (3.60) or (3.61) is unitary, the normalization condition is preserved in time:
Tr[ρ̂(t)] = 1 or 〈ψ(t)|ψ(t)〉 = 1 (t > 0).

The density operator leads to the expectation value of an arbitrary operator
�̂(â, â†) at time t , i.e.,

〈�̂(t)〉 = Tr[ρ̂(t)�̂]. (3.62)

Using the general relation (3.42), one can translate Eq. (3.62) into the phase-space
averaged form, in which the Weyl symbol of �̂, i.e., �W (α,α∗), is weighted with
the time-dependent Wigner function W (α,α∗, t) = [ρ̂(t)]W (α,α∗):

〈�̂(t)〉 =
∫

dαdα∗�W (α,α∗)W (α,α∗, t). (3.63)

In this representation, the dynamics of the system are entirely represented through
the time evolution of the classical distribution function in the phase space. Due to the
normalization condition Tr[ρ̂(0)] = 1, the Wigner function is normalized at t = 0
as follows:

∫
dαdα∗W (α,α∗, 0) = 1. (3.64)

The unitarity of dynamics says that this condition must be preserved under the time
evolution generated by Eq. (3.60).

To derive an equation of motion for the Wigner function, let us make theWigner–
Weyl transform of the von-Neumann equation (3.60). The result is given by

i�
∂W

∂t
= {HW ,W }M.B.

= 2HW sinh

[
1

2
�c

]
W. (3.65)

Here, HW = (Ĥ)W is the Weyl symbol of the Hamiltonian. This equation is linear in
W , and the Moyal-bracket part in the righthand side typically involves complicated
differentials with respect to the phase-space variables. If we have an explicit form
of the Wigner function for any t , which satisfies Eq. (3.65) exactly, the full quan-
tum dynamics of quantum states and operator expectation values are completely
described.
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3.3.1 Truncated-Wigner Approximation

The full information of the quantum dynamics is encoded in the Wigner function
W (α,α∗, t), which is obtained as a solution of Eq. (3.65). Nevertheless, solving
the time-evolution Eq. (3.65) and determiningW (α,α∗, t) with no approximation is
generally hard even for small systems having a few degrees of freedom.

When the system is near a semiclassical limit, it is allowed to reduce the difficulty
in solving the time evolution by using a semiclassical expansion. To illustrate our
idea, let us formally expand the righthand side of Eq. (3.65) in the symplectic operator
�c:

i�
∂W

∂t
= HW�cW + 1

3!22 HW�3
cW + 1

5!24 HW�5
cW + · · · . (3.66)

If we truncate higher-order terms of order O(�3
c) from the expansion series, then

the time evolution of the Wigner function is effectively generated by the classical
Liouville equation

i�
∂W

∂t
≈ {HW ,W }P.B.. (3.67)

Within Eq. (3.67), the Wigner function is conserved along characteristic trajectories,
which are solutions of the classical Hamilton equation:

i�
∂αcl, j

∂t
= ∂HW

∂α∗
cl, j

, i�
∂α∗

cl, j

∂t
= − ∂HW

∂αcl, j
. (3.68)

In classical statistical mechanics, this property is known as the Liouville theorem
[2]. Using this theorem, we find that the quantum average 〈�̂(t)〉 reduces to a semi-
classical form

〈�̂(t)〉 ≈
∫

dα0dα∗
0W0(α0,α

∗
0)�W [αcl(α0,α

∗
0, t),α

∗
cl(α0,α

∗
0, t)]. (3.69)

This semiclassical formula is constructed from two ingredients: the classical Hamil-
ton trajectory αcl(α0,α

∗
0, t) starting from a point α0 and the Wigner function

W0(α0,α
∗
0) = [ρ̂(0)]W (α0,α

∗
0) for the initial density operator. Usually, obtaining

these is much simpler than directly solving Eq. (3.65). This approximation is called
the TWA [5, 9].

Equation (3.69) says that the initial classical field α0 is distributed over the phase
space according to theWigner function of the initial quantum state. Within the TWA,
the initial conditions of the classical dynamics fluctuate around amean configuration,
whereas the time evolution itself is entirely deterministic. This randomness of the
initial configurations describes a leading-order correction to the mean-field solution
of dynamics due to quantum fluctuations [5, 11, 14]. Indeed, the mean-field result
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classical 
trajectories

initial value

classical  
trajectory 

distributed  
inital values

(a) Mean-field approximation (b) Truncated-Wigner approximation

Im[α]

Re[α] Re[α]

Im[α]

Fig. 3.3 Schematic picture of the a MFA and b TWA. The vertical and horizontal axes indicate
the phase-space variable α. Each line represents the solution of the Hamilton equation

can be obtained if we formally neglect the width of the Wigner function. Then, the
classical field evolves from a fixed configuration αcl, j (t = 0) = 〈â j 〉. In Fig. 3.3,
we show the difference between the MFA and TWA schematically. It should be
emphasized that since the Wigner function is not positive definite, it is not always
appropriate to interpret each trajectory as a randomized sample from a well-defined
probability distribution (see also Ref. [5]). Nevertheless, such a rough picture is often
useful, and effectively valid for some cases where we are able to find an appropriate
Gaussian distribution to approximate the exact Wigner function within the same
accuracy of TWA (for details of the Gaussian approximation, see Chap. 5).

We note that the classical field scales with a square root of the mode occupancy
nocp, so that the expansion in�c is characterized by the inverse of nocp. For the Bose–
Hubbard model, nocp is equal to the filling factor per site. It is known that the TWA
is asymptotically exact at short times, and the valid timescale of the semiclassical
approximation becomes longer for larger nocp (see also Ref. [5]). Moreover, if the
system is linear or non-interacting, the semiclassical approximation then becomes
exact because the higher-order terms exactly vanish. Usually, the TWA offers a good
approach for systems where fluctuations are small or the Hamiltonian has a weak
non-linearity. Indeed, a small non-linearity implies a small error of the truncation as
seen in Eq. (3.66).

3.3.2 Semiclassical Approximation in Phase-Space Path
Integrals

The method of characteristic we presented above, i.e., the Liouville theorem is a
straightforward way to derive the TWA. There is another approach to derive the same
result: this approach is made through a phase-space path-integral representation of
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the quantum expectation values [40]. For simplicity, we restrict ourselves to the
single-mode case in what follows.

Our starting point is the Heisenberg operator associated with the unitary time-
evolution operator Û(t, t0):

�̂t0(t) = Û†(t, t0)�̂(t)Û(t, t0), (3.70)

where the foot index indicates the time, atwhich �̂t0(t) coincideswith theSchrödinger
representation �̂(t). In addition, we take into account the explicit dependence of the
Schrödinger representation on time. Using the Heisenberg representation, the quan-
tum expectation value of �̂(t) with ρ̂(t) = Û(t, t0)ρ̂0Û†(t, t0) reads

〈�̂(t)〉 = Tr
[
ρ̂(t0)�̂t0(t)

]
. (3.71)

The next step is to transform this into the phase-space representation form. Using
Eq. (3.42), it reads

〈�̂(t)〉 =
∫

d2α0

π
W (α0, t0)[�̂t0(t)]W (α0), (3.72)

whereW (t0) = [ρ̂(t0)]W . It is easily confirmed that the time-dependentWeyl symbol
[�̂t0(t)]W (α0) is linearly related with the one at time t0:

[�̂t0(t)]W (α0) =
∫

d2α

π
�W (α, t)UW (α, t;α0, t0), (3.73)

where UW (α, t;α0, t0) is given by

UW (α, t;α0, t0) =
∫

d2βd2β0

π2
e−αβ∗+α∗βe−α0β

∗
0+α∗

0β0

× Tr[D̂†(β)Û(t, t0)D̂
†(β0)Û†(t, t0)]. (3.74)

Thus, the expectation value is expressed as

〈�̂t0(t)〉 =
∫

d2αd2α0

π2
�W (α, t)UW (α, t;α0, t0)W (α0, t0). (3.75)

The two point function UW (α, t;α0, t0) can be regarded as a propagator connecting
the initial and end points of the time evolution in the phase space.

Let us explain the basic and important properties of the phase-space propaga-
tor UW (α, t;α0, t0). Due to the unitarity of the time evolution operator, there is a
recursion relation for t0 ≤ t1 ≤ t :
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Û(t, t1)Û(t1, t0) = Û(t, t0). (3.76)

Inserting this relation into each interval of the time evolution, we arrive at an iterative
relation for t0 ≤ t1 ≤ t2 ≤ · · · ≤ tN−1 ≤ tN ≤ t :

Û(t, tN )Û(tN , tN−1) · · · Û(t2, t1)Û(t1, t0) = Û(t, t0). (3.77)

There are similar relations for the phase-space propagator. Indeed, through direct
calculations, one can confirm that the propagator fulfills

UW (α, t;α0, t0) =
∫

d2α1

π
UW (α, t;α1, t1)UW (α1, t1;α0, t0) (3.78)

for t0 ≤ t1 ≤ t . Using this relation iteratively, we arrive at a phase-space representa-
tion of the iterative relation

UW (α, t;α0, t0) =
∫ N∏

n=1

d2αn

π
UW (α, t;αN , tN )UW (αN , tN ;αN−1, tN−1) · · ·

×UW (α2, t2;α1, t1)UW (α1, t1;α0, t0). (3.79)

If the number of steps N is so large that the time interval is infinitesimal, Eq. (3.75)
can be rewritten into a phase-space path-integral form. Notice that the boundary of
the path integral is now not fixed by specific phase-space points. In particular, the
initial point is weighted with the initial Wigner function W (α0, t0).

Let us determine the phase-space propagator for the infinitesimal interval. For the
purpose, we use the fact that we also have a similar relation to Eq. (3.73) for the
Wigner function:

W (α, t) =
∫

d2α0

π
UW (α, t;α0, t0)W (α0, t0). (3.80)

For a small interval between t and t + �t , the Wigner function propagates in phase
space and time and satisfies

W (α, t + �t) =
∫

d2α0

π
UW (α, t + �t;α0, t)W (α0, t). (3.81)

Toobtain the interval propagatorUW (α, t + �t;α0, t),we consider the von-Neumann
equation, which is discretized in time for the interval time step:

ρ̂(t + �t) = ρ̂(t) + �t

i�
[Ĥ ρ̂(t) − ρ̂(t)Ĥ ]. (3.82)

From Eq. (3.82), we obtain the following expression:
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W (α, t + �t) = W (α, t) +
∫

d2α0

π

d2σ

π
eσ ∗(α−α0)−σ(α∗−α∗

0 ) (3.83)

×
{
1 − �t

i�

∞∑
n=0

1

22n

s1+s2=2n+1∑
s1,s2=0

H (s1,s2)
W (α0)

s1!s2! (σ )s1(σ ∗)s2
}
W (α0, t),

where H (s1,s2)
W (α) implies

H (s1,s2)
W (α) = ∂s1+s2HW (α)

∂αs1∂(α∗)s2
. (3.84)

Comparing Eqs. (3.81) and (3.83), we have the infinitesimal propagator in the phase
space

UW (α, t + �t;α0, t) =
∫

d2σ

π
eσ ∗(α−α0)−σ(α∗−α∗

0 ) (3.85)

×
{
1 − �t

i�

∞∑
n=0

1

22n

s1+s2=2n+1∑
s1,s2=0

H (s1,s2)
W (α0)

s1!s2! (σ )s1(σ ∗)s2
}

.

Notice that α and α0 correspond to the mean-field degrees of freedom, whereas σ

describes the quantum fluctuations.
Equation (3.85) has no approximation and actually contains the full information

of the exact quantum dynamics. If we neglect higher-order terms with respect to the
quantum fluctuations, we arrive at the TWA once again. Up to the leading order of
the σ -field, the infinitesimal propagator turns out to be a delta function:

UW (α, t + �t; α0, t) ≈
∫

d2σ

π
eσ

∗(α−α0)−σ(α∗−α∗
0 )

{
1 − �t

i�

∂HW

∂α∗
0

σ∗ − �t

i�

∂HW

∂α0
σ

}

≈
∫

d2σ

π
exp

[
σ∗

(
α − α0 − �t

i�

∂HW

∂α∗
0

)
− σ

(
α∗ − α∗

0 + �t

i�

∂HW

∂α0

)]

= πδ

(
α − α0 − �t

i�

∂HW

∂α∗
0

)
δ

(
α∗ − α∗

0 + �t

i�

∂HW

∂α0

)
. (3.86)

Using this result, we finally obtain the TWA formula (�t → 0):

〈�̂t0 (t)〉 ≈
∫

d2αd2α0

π2

N∏
n=1

d2αn

π
�W (α, t)

N+1∏
m=1

πδ(2)

(
αm − αm−1 − �t

i�

∂HW

∂α∗
m−1

)
W (α0, t0)

=
∫

dα0dα∗
0�W [αcl(α0, t)]W (α0, t0) (3.87)

where αN+1 = α and αcl(α0, t) is the solution of the single-mode Hamilton equation
starting from α = α0 at time t0.

Within the leading order, the time evolution is entirely deterministic and described
within the classical Hamilton equation. Then, the quantum fluctuation effects are
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encoded only in the Wigner function at time t0. It is worth noting that the higher-
order corrections of the fluctuations give rise to infinitesimal jumps of each classical
trajectory and lead to perturbativemodifications of theTWAexpectation value,which
can be regarded as non-linear responses to the jumps [5, 14]. However, we do not
take into account these higher-order contributions in this Thesis.
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Chapter 4
Response of the Higgs Mode in a Three
Dimensional Optical Lattice

Abstract In this chapter, we investigate responses of the Higgs mode in strongly-
correlatedBose gases in a three-dimensional optical lattice.Our goal is to examine the
detectability of the long-lived Higgs modes in real experiments of ultracold gases. In
Sect. 4.1, we discuss time-dependent external perturbations to excite the Higgs mode
in the optical lattice and formulate response functions within the linear-response the-
ory. In Sect. 4.2, we generalize the effective model presented in Chap. 2 for the
high-filling limit into low-filling cases, and derive interaction vertices among col-
lective modes by identifying higher-order contributions of the Holstein–Primakoff
expansion. In Sect. 4.3, we calculate the response functions using Feynman’s dia-
grammatic perturbation theory for a finite-temperature Green’s function. In Sect. 4.4,
we numerically evaluate the analytical expressions obtained from the perturbative
expansion and show that these exhibit a characteristic signal associated with the
Higgs mode. In addition, we deal with a harmonic trap effect on the response func-
tions within a local density approximation and discuss the detectability of the Higgs
mode in typical experiments.

4.1 Linear Response Theory for External Modulations

Throughout this chapter, we set � = kB = 1. For simplicity, we omit the hat symbols
from operators.

4.1.1 Kinetic Energy Modulations

The Higgs mode is the collective excitation associated with fluctuations of the order-
parameter amplitude around its equilibrium configuration. A direct way of exciting
this mode in cold atomic experiments is to modulate the condensate density |�|2 by
using the technique of periodic optical-lattice-amplitude modulation [1, 2]. For the
systemdescribed by theBose–Hubbardmodel, atoms look at the periodicmodulation
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as a hopping strength modulation, i.e., a kinetic energy modulation (for details of
this technique, see Refs. [3–5]). In Ref. [2], the experimental group has achieved a
rather small amplitude modulation, whose vibration amplitude is approximately 3%
of the initial depth. Therefore, the system is weakly perturbed during the modulation
time, so that one can describe responses to the modulations by the linear response
functions.

To get the linear response function to the J modulation, let us suppose that the
system is in a thermal equilibrium state with the inverse temperature β = T−1 at
t → −∞. When we add a small and periodic modulation to the hopping strength J
slowly such that J → [1 + �J (t)]J , where�J (t) = δJ cos(ωt) and δJ is sufficiently
small, the perturbed system can be described by the following Hamiltonian with an
oscillating perturbation term:

HBH → HBH + �J (t)K ,

where K ≡ −J
∑

〈i j〉 a
†
i a j expresses the kinetic energy of the Bose–Hubbardmodel.

The perturbation comes from the weak coupling with the external field. The instanta-
neous change of the total energy by such a modulation is proportional to the instan-
taneous quantum mechanical average of the kinetic energy [3, 5]. Therefore, the
response of the system is characterized only by the kinetic energy response. The cor-
responding response function turns out to be the following K -to-K response function
[4, 6]

DR
KK (t − t ′) = −i�(t − t ′)

〈[
K (t), K (t ′)

]〉
eq , (4.1)

where �(t) is the step function defined by

�(t) =
{
1 for t > 0,
0 for t < 0.

(4.2)

K (t) = eiHBHt K e−iHBHt denotes the Heisenberg representation of the kinetic-energy
operator. The bracket 〈· · · 〉eq ≡ Tr(e−βHBH · · · )/Tr e−βHBH means the thermal aver-
age with the normalized canonical Gibbs distribution. The superscript character “R"
indicates that DR

KK measures a retarded correlation between different times and sat-
isfies the causality law.

Transforming Eq. (4.1) into the frequency space, we have the dynamical suscep-
tibility associated with the kinetic-energy modulation. At a given ω, it is written in
the form

χKK (ω) =
∫ ∞

−∞
DR

KK (t)eiωt dt. (4.3)

The imaginary part of this function gives the so called spectral function SKK (ω) ≡
−Im [χKK (ω)], which is proportional to the external energy absorbed by the system
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for a finite-time period of the modulation [2, 5]. The response function or its sus-
ceptibility characterizes the resonance of the Higgs mode in experimental systems
[2, 6]. The Max-Planck group has experimentally obtained SKK (ω) at low frequen-
cies by measuring the temperature increase of the system after the lattice-amplitude
modulation with a fixed modulation time [2].

4.1.2 Onsite-Interaction Energy Modulations

The hoppingmodulation changes the condensate density periodically in time because
the latter one is a functionof J/U . This implies that in order tomake aperiodic driving
of the condensate density one can take another modulation scheme, i.e., modulation
of the onsite interaction energy. To our knowledge, this kind of modulation has not
been discussed thus far as a probe of theHiggsmode. In this section, we identify what
types of response function characterize the response to the U modulation and how
one can realize such a modulation in experiments with high controllability. Some
detailed relationships between the response function and absorbed energy under the
U modulation are presented in Appendix A.

Let us consider a temporal and sufficiently weak driving of U . This is described
byU → [1 + �U (t)]U , where�U (t) = δUcos(ωt) and δU is sufficiently small. The
Hamiltonian of the perturbed system is given by

HBH → HBH + �U (t)O.

Here, O ≡ U
2

∑
i (n − n0)2 is the onsite-interaction energy of the system. It is shown

inAppendixA that the instantaneous change rate of the total energy is proportional to
the quantummechanical average of O . Within the linear response regime, the result-
ing response can be characterized by the following O-to-O-type response function

DR
OO(t − t ′) = −i�(t − t ′)

〈[
O(t), O(t ′)

]〉
eq , (4.4)

where O(t) = eiHBHt Oe−iHBHt . For this function, one can define the dynamical sus-
ceptibility of the U modulation,

χOO(ω) =
∫ ∞

−∞
DR

OO(t)eiωt dt. (4.5)

As in the case of the J modulation, its imaginary part is nothing else but the spectral
function SOO(ω) = −Im [χOO(ω)] for the U modulation, which is proportional to
the absorption energy under the external driving (see also Appendix A). We expect
that this type of driving can also be utilized as an experimental probe of the Higgs
mode and leads to a Higgs resonance in the spectral function.
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Thanks to the recent developments of the experimental technology in atomic,
molecular, and optical (AMO) physics, one has been allowed to control the s-wave
scattering length, i.e., the strength of the onsite interaction, by utilizing highly con-
trolled optical techniques. The experimental techniques include the optical Feshbach
resonance [7–9] and the optically induced Feshbach resonance [10, 11]. In contrast
to the conventional magnetic Feshbach resonance, these techniques allow for fast
temporal modulation of U with a frequency on the order of 1 to 10 kHz, which is
supposed to be comparable to a typical resonance frequency (or mass) of the Higgs
mode in the cold-atomic system.

4.2 Interactions Between Collective Modes

Themain purpose of this chapter is to analyze the dynamical susceptibilities (4.3) and
(4.5), respectively for the grand-canonical three-dimensional (3D) Bose–Hubbard
model (2.20) in the strongly-interacting regime in which the Higgs and NG modes
can appear as dominant low-energy excitations. To do that, we utilize the effec-
tive pseudospin-1 mapping explained in Chap. 2 for simplifying the original Bose–
Hubbard model. In particular, in order to deal with an experimental situation where
the atomic occupation is tuned to unity, the modified effective model (2.45) is mainly
used. An entirely similar analysis based on the high-filling effective model is also
performed to compare two results at different fillings (see Sect. 4.4.1).

In this section, before going to our main analysis of the susceptibilities, we derive
an approximate spin-wave Hamiltonian, which describes the mean-field dispersion
relations of the Higgs and NG modes and interactions among them. To perform
that, we apply the Holstein–Primakoff (HP) expansion to the effective pseudospin-1
model at low fillings (2.45). Although a similar expansion up to the quadratic order
(no interaction) was discussed by Huber et al. in Ref. [12], we present its derivation
in details because our analysis successfully gives higher-order corrections beyond
their results and deals with transitions or mixing between quadratic-order eigenstates
for the linearized Hamiltonian in fluctuations. As we will see below, the subsequent
corrections give rise to a finite lifetime of the collective modes.

4.2.1 Fluctuations from the Mean-Field Ground State

Let us start again from considering fluctuations around themean-field superfluid state
derived from the Gutzwiller ansatz in Chap. 2. Substituting the canonical transfor-
mation (2.55) into the low-filling effective model (2.45), we obtain the Hamiltonian
describing the collective fluctuations around the mean field. The resulting Hamilto-
nian can be separated into five parts:
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Heff = H (0)
eff + H (1)

eff + H (2)
eff + H (3)

eff + H (4)
eff , (4.6)

where each term contained inH (l)
eff (l = 0, 1, 2, 3, 4) has l numbers of the fluctuation

operator b†m,i , bm,i (m = 1, 2). The explicit forms of H (0)
eff and H (1)

eff are given by

H (0)
eff =

∑

〈i j〉

1

z
A0b

†
0,i b0,i b

†
0, j b0, j +

∑

i

Ã0b
†
0,i b0,i ,

H (1)
eff =

∑

〈i j〉

1

z
A1b

†
0,i b0,i b

†
1, j b0, j +

∑

〈i j〉

1

z
B1b

†
0,i b0,i b

†
2, j b0, j

+
∑

i

Ã1b
†
1,i b0,i +

∑

i

B̃1b
†
2,i b0,i + H.c..

The quadratic termH (2)
eff is presented by

H(2)
eff =

∑

〈i j〉

1

2z
A2b

†
0,i b0,i b

†
1, j b1, j +

∑

〈i j〉

1

z
B2b

†
0,i b0,i b

†
1, j b2, j

+
∑

〈i j〉

1

z
D2b

†
1,i b0,i b

†
1, j b0, j +

∑

〈i j〉

1

2z
E2b

†
1,i b0,i b

†
0, j b1, j

+
∑

〈i j〉

1

z
F2b

†
1,i b0,i b

†
0, j b2, j +

∑

〈i j〉

1

z
G2b

†
1,i b0,i b

†
2, j b0, j

+
∑

〈i j〉

1

z
H2b

†
0,i b2,i b

†
0, j b2, j +

∑

〈i j〉

1

2z
I2b

†
0,i b2,i b

†
2, j b0, j

+
∑

i

1

2
Ã2b

†
1,i b1,i +

∑

i

B̃2b
†
1,i b2,i +

∑

i

1

2
C̃2b

†
2,i b2,i + H.c..

Moreover, the remaining terms H (3)
eff and H (4)

eff are given by

H (3)
eff =

∑

〈i j〉

1

z
A3b

†
1,i b1,i b

†
1, j b0, j +

∑

〈i j〉

1

z
B3b

†
1,i b1,i b

†
2, j b0, j

+
∑

〈i j〉

1

z
C3b

†
1,i b0,i b

†
2, j b1, j +

∑

〈i j〉

1

z
D3b

†
1,i b0,i b

†
1, j b2, j

+
∑

〈i j〉

1

z
E3b

†
0,i b2,i b

†
2, j b1, j +

∑

〈i j〉

1

z
F3b

†
0,i b2,i b

†
1, j b2, j + H.c.,

H (4)
eff =

∑

〈i j〉

1

2z
A4b

†
1,i b1,i b

†
1, j b1, j +

∑

〈i j〉

1

z
B4b

†
1,i b2,i b

†
1, j b2, j

+
∑

〈i j〉

1

z
C4b

†
1,i b2,i b

†
1, j b1, j +

∑

〈i j〉

1

2z
D4b

†
1,i b2,i b

†
2, j b1, j + H.c..
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In the above representations, the coefficients such as A0, Ã0, A1, B1, . . . depend on
J and μ through the variational parameter θmf . The explicit forms are complicated
functions of J and μ. These are given in Appendix B. We note that z = 2d = 6 is
the coordination number for the cubic lattice.

4.2.2 Holstein–Primakoff Expansion

As a next step, we expand H (l)
eff (l = 0, 1, 2, 3, 4) in fluctuations by use of the HP

expansion (2.57) for the three-flavor bosons:

b†m,i b0, j ≈ b†m,i − 1

2
b†m,i b

†
1, j b1, j − 1

2
b†m,i b

†
2, j b2, j + · · · .

Weeliminateb†0,i b0,i in theHamiltonian (4.6) byusing the local constraint
∑

n b
†
nbn =

1, and then substitute this expansion into the equation. A direct computation leads
to the following series

Heff ≈ H (0)
SW + H (1)

SW + H (2)
SW + H (3)

SW + H (4)
SW · · · . (4.7)

Each term H (l)
SW (for l = 0, 1, 2, 3, 4, . . .) involves l collective-mode or spin-wave

operators. The zeroth order term for l = 0 gives a constant contribution to this series.
The control parameter of such an expansion is given by S−1, where S is the spin
magnitude of the system. In fact, each termH (l)

SW is of order O(S2−l/2). In this work,
in order to see the lowest order effects on the response properties to the J and U
modulations, we deal with fluctuation effects on the linear response functions up to
order O(S0). Keeping this point in mind, the expansion (4.7) is stopped at l = 4. A
similar spin-wave analysis has been made for some concrete quantum-spin models
by Chernyshev and Zhitomirsky in Ref. [13].

Let us look at details of the terms H (0)
SW, H (1)

SW, H (2)
SW, and H (3)

SW in the expansion
(4.7), respectively. We begin with the zeroth order term denoted byH (0)

SW. This gives
the ground state energy, which is a c-number functional obtained from themean-field
treatment with no fluctuation:

H (0)
SW = N (A0 + Ã0) = NEMF(θmf), (4.8)

where EMF(θmf) is Eq. (2.47) derived from the Gutzwiller ansatz (see Sect. 2.5.4).
We note that N is used as the total lattice number throughout this chapter.

The leading order correction in the expansion is a linear combination of the spin-
wave operators:

H (1)
SW = √

N (A1 + Ã1)(b
†
1,0 + b1,0) + √

N (B1 + B̃1)(b
†
2,0 + b2,0). (4.9)
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This term is of order O(S3/2). For the mean-field ground state, we can easily verify
that H (1)

SW = 0. This is consistent with the fact that at the mean-field configuration
the first-order derivatives of the energy functional with respect to the variational
parameters should vanish.

The quadratic termH (2)
SW = O(S) can be formally written in the matrix form

H (2)
SW = δE2 +

4∑

λ=1

4∑

ν=1

∑

k∈�0

b†λ,k(Hk)λνbν,k, (4.10)

where bk = (b1,k, b2,k, b3,k, b4,k)T with (b3,k, b4,k) = (b†1,−k, b
†
2,−k) is a vector rep-

resentation for the spin-wave operators. The 4 × 4 matrix Hk acting on that vector
is a matrix representation of the second-order Hamiltonian given by

Hk =

⎛

⎜
⎜
⎝

f11(k) f12(k) g11(k) g12(k)

f21(k) f22(k) g21(k) g22(k)

g11(k) g12(k) f11(k) f12(k)

g21(k) g22(k) f21(k) f22(k)

⎞

⎟
⎟
⎠ , (4.11)

where

f11(k) = (A2 + Ã2 − 2A0 − Ã0 + E2γk)/2,

f12(k) = f21(k) = (B2 + B̃2 + F2γk)/2,

f22(k) = (C̃2 − 2A0 − Ã0 + I2γk)/2,

g11(k) = D2γk,

g12(k) = g21(k) = G2γk/2,

g22(k) = H2γk.

The periodic function γk = (coskx + cosky + coskz)/3 characterizes the band struc-
ture in the 3D wave-number space. At n0 � 1, f12(k) = f21(k) = g12(k) = g21(k)

= 0. Hence, at this limit, H (2)
SW has no mixing term such as b†1,kb2,k, and we can see

that two quadratic parts labelled by either 1 or 2 can be entirely decoupled from each
other. This feature stems from the explicit particle-hole symmetry of the effective
pseudospin-1 model for n0 � 1 (see also Sect. 2.5.2). Indeed, terms with an odd
number of b2,k are forbidden by the particle-hole symmetry at the microscopic level
because an exchange between a particle t1,i and hole t−1,i leads to a change of the
sign of b2,k while such a transformation remains the sign of b1,k. On the other hand,
at lower filling rates, there is no restriction to remove such cross terms.

We note that the constant part coming from the quadratic operator, δE2 =
−∑

k∈�0
( f11(k) + f22(k)), can be interpreted as a quantum fluctuation correction

to the mean-field energy of the ground stateH (0)
SW(θmf , χmf). The detailed discussion

will be presented in Sect. 4.2.4.
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The cubic term H (3)
SW, which describes interactions among three spin waves, has

many non-zero terms. We can write it as

H (3)
SWSect. = 1√

N

3∏

i=1

4∑

λi=1

∑

ki∈�0

C(λ1λ2λ3)
pλ1k1,pλ2k2,pλ3k3

δk1+k2+k3,0 bλ1,k1bλ2,k2 bλ3,k3 ,

(4.12)

where pλ = 1 (for λ = 1, 2) or pλ = −1 (for λ = 3, 4). Under the symbol of the
momentum summation, δk1+k2+k3,0 is introduced to impose the momentum conser-
vation lawon the spinwaves. This conservation should be satisfied at every interaction
vertex in any scattering processes. Non-zero coefficients of C(λ1λ2λ3)

k1,k2,k3 are given by

C(331)
k1,k2,k3 = C(131)

k1,k2,k3 = (A3 − A1)γk1 ,

C(342)
k1,k2,k3 = C(142)

k1,k2,k3 = −A1γk1 ,

C(431)
k1,k2,k3 = C(231)

k1,k2,k3 = (B3 − B1)γk1 ,

C(442)
k1,k2,k3 = C(242)

k1,k2,k3 = −B1γk1 ,

C(341)
k1,k2,k3 = C(132)

k1,k2,k3 = C3γk1 ,

C(332)
k1,k2,k3 = C(141)

k1,k2,k3 = D3γk1 ,

C(432)
k1,k2,k3 = C(241)

k1,k2,k3 = E3γk1 ,

C(441)
k1,k2,k3 = C(232)

k1,k2,k3 = F3γk1 ,

and the others are identically zero. Specifically for n0 � 1, C(431)
k1,k2,k3 = C(231)

k1,k2,k3 =
C(442)
k1,k2,k3 = C(242)

k1,k2,k3 = C(341)
k1,k2,k3 = C(132)

k1,k2,k3 = C(332)
k1,k2,k3 = C(141)

k1,k2,k3 = 0 because
these terms have an odd number of b2,k.

Here we make a comment on the quartic term H (4)
SW. In this Thesis, the quartic

term does not enter into our theoretical calculations for the linear response functions
because, as we will see in Sect. 4.2.4, it would not provide significant effects on the
stability of the Higgs mode.

4.2.3 Bogoliubov Transformation for the Spin Waves

In the previous section, we have performed the HP expansion for the Hamiltonian
(4.6) and looked at some properties ofH (l)

SW, individually. In the representation with
the spin-wave operators bm,k, the quadratic part of the expanded Hamiltonian can
have off-diagonal terms. In this section, we diagonalize the quadratic Hamiltonian by
using the Bogoliubov transformation for the multi-component spin-wave operators
as we did in Sect. 2.5.5. Compared with the method shown there, the following
approach, which was also employed by Huber et al. in Ref. [12], is applicable even



4.2 Interactions Between Collective Modes 61

to low-filling cases, in which two different flavors are not decoupled in the quadratic
Hamiltonian.

To find the diagonalized basis, we define a new boson denoted by βm,k through
the following linear transformation:

bk = Wkβk, βk = W−1
k bλ,k, (4.13)

where βk = (β1,k, β2,k, β3,k, β4,k)
T, β3,k ≡ β

†
1,−k, and β4,k ≡ β

†
2,−k. These new

bosons are supposed to satisfy the usual canonical relation for bosons

[βm,k, β
†
n,k′ ] = δm,nδk,k′ , [βm,k, βn,k′ ] = [β†

m,k, β
†
n,k′ ] = 0, (4.14)

for m, n = 1 or 2. Due to this, the linear transformation Wk fulfills

WkgW
†
k = W†

kgWk = g, (4.15)

where g = diag(1, 1,−1,−1) is the metric tensor in the Minkowski space M
2⊗2.

Without loss of generality, one can write the elements of Wk in the form

Wk =

⎛

⎜
⎜
⎝

u11(k) u12(k) v11(k) v12(k)

u21(k) u22(k) v21(k) v22(k)

v∗
11(−k) v∗

12(−k) u∗
11(−k) u∗

12(−k)

v∗
21(−k) v∗

22(−k) u∗
21(−k) u∗

22(−k)

⎞

⎟
⎟
⎠ . (4.16)

The transformation parameters such as u11(k) are determined as follows: For an
adequate set of parameters, the Hamiltonian should have a diagonalized form

H (2)
SW = δE2 +

4∑

λ=1

4∑

ν=1

∑

k∈�0

β
†
λ,k(Dk)λνβν,k,

Dk = diag[e1(k), e2(k), e3(k), e4(k)]. (4.17)

The diagonal matrix Dk is not known at the moment, and it is obtained from the
similarity transformation with use of Wk for the 4 × 4 matrix gHk, but not Hk itself:

W−1
k (gHk)Wk = gDk. (4.18)

This can be regarded as an eigenvalue equation for gHk. If it is solved, we have
two dispersions, E1,k = e1(k) + e3(k) for β1,k and E2,k = e2(k) + e4(k) for β2,k, as
the gapped Higgs and gapless NG dispersions, respectively. The matrix Wk can be
constructed from right eigenvectors belonging to the different eigenvalues. Notice
that the left eigenvectors can be computed as well, but generally they do not agree
with the right ones because gHk is a non-Hermitian matrix.
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One can solve this eigenvalue problem analytically or numerically. In the large-
filling limit n0 � 1, since the branches labeled by 1 or 2 are completely decoupled,
it can be solved analytically. In this case, the transformation matrix is reduced such
that

Wk →

⎛

⎜
⎜
⎝

u1,k 0 v1,k 0
0 u2,k 0 v2,k

v∗
1,−k 0 u∗

1,−k 0
0 v∗

2,−k 0 u∗
2,−k

⎞

⎟
⎟
⎠ , (4.19)

where the elements have been given by Eqs. (2.59) and (2.60). This matrix can
reproduce the dispersion relations for the large-filling limit [see Eq. (2.62)]. At low
fillings, Huber and his coworkers derived the analytical expression for the dispersion
relations in the superfluid phase [12]. In this Thesis, we simply solve the eigenvalue
problemusing a numerical diagonalization approach in order to have both dispersions
and transformationmatrix. These will be needed tomake calculations of the response
functions in Sect. 4.3.

In the diagonalized frame of the quadratic part, the cubic termH (3)
SW becomes

H (3)
SW = 1√

N

3∏

i=1

4∑

λi=1

∑

ki∈�0

M(λ1λ2λ3)
pλ1k1,pλ2k2,pλ3k3

δk1+k2+k3,0 βλ1,k1βλ2,k2βλ3,k3 . (4.20)

The new coefficient M(λ1λ2λ3)
k1,k2,k3 is a linear combination of the old ones C(λ1λ2λ3)

k1,k2,k3 . It has
been introduced through the following relation

M(λ1λ2λ3)
pλ1k1,pλ2k2,pλ3k3

=
4∑

ν1,ν2,ν3=1

C(ν1ν2ν3)
pν1k1,pν2k2,pν3k3

(Wk1)
λ1

ν1
(Wk2)

λ2
ν2

(Wk3)
λ3

ν3
, (4.21)

which looks like a basis change of tensors having three indices. The delta δk1+k2+k3,0

describes the momentum-conservation law among three new operators in the trans-
formed basis.

The coefficient M(λ1λ2λ3)
k1,k2,k3 characterizes the interactions among the three collective

modes expressed in the diagonalized basis, i.e., the Bogoliubov quasi-particles. For
the large-filling limit n0 � 1, scattering processes with an odd number of the NG
modes are prohibited because the effective model in this limit (2.44) has the explicit
particle-hole symmetry. On the other hand, the effective model at lower filling rates
(2.45) has no longer such a symmetry, thereby permitting not only the even-NG
processes, but also the odd-NG ones. As we will see in Sect. 4.3.3, new types of
contribution show up in calculations of the response functions at low fillings due to
such a difference at the microscopic level.
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4.2.4 Normal-Ordered Hamiltonian

So far we have formulated the Bogoliubov transformation for the spin-waveHamilto-
nianHSW. Obviously, the transformedHamiltonian, which is obtained after plugging
the transformation (4.13) into Eq. (4.7), is not written in the normal-ordered form
with respect to βm,k. Before proceeding to the field-theoretical calculation for the
spin-wavemodel presented in Sect. 4.3, we here need to deal with the normal-ordered
spin-wave Hamiltonian.

Let us begin with the quadratic part of the total spin-wave Hamiltonian, i.e.,H (2)
SW.

In the following discussion, two colons : A : denote the normal-ordering operation
for an arbitrary field operatorA, where all creation operators of the quasi-particle are
put in the left-hand side of products of the annihilation operators. This is a subtraction
of the vacuum-expectation-value contribution for arbitrary field operators. In the
quadratic Hamiltonian, bilinear operators, which are not in the normal-ordered form,
can yield a constant shift after taking permutation between two canonical pairs, i.e.,
βm,k and β

†
m,k. A direct calculation leads to the following form

H (2)
SW = δE2 + δ Ẽ2+ : H̃ (2)

SW : ,

where δ Ẽ2 is the constant shift arising after permutation of the operators.
Writing the cubic term, i.e., H (3)

SW, in the normal-ordered form, we have

H (3)
SW =: H (3)

SW : +δH (1)
SW.

As the result of permutation, a linear term δH (1)
SW arises from the cubic term. This

modifies the bare linear term in the spin wave Hamiltonian. Similarly, the quartic
Hamiltonian, i.e.,H (4)

SW, can take the following form:

H (4)
SW = δE4+ : δH (2)

SW : + : H (4)
SW : ,

where δE4 and : δH (2)
SW : can be viewed as the constant and quadratic corrections to

the corresponding bare terms.
The total constant shift δE2 + δ Ẽ2 + δE4 can be interpreted as a fluctuation cor-

rection to the mean-field ground state energyH (0)
SW [12]. The first two terms represent

1/S corrections to the ground-state energy and the last term is a higher order cor-
rection of order 1/S2. Minimizing the modified ground-state energy with respect to
θ and χ leads to a renormalization of the variational parameters of the mean-field
configuration: θmf → θren = θmf + δθcor and χmf → χren = χmf + δχcor. This cor-
responds to a reduction of the order-parameter amplitude induced by quantum and
thermal fluctuations. At the renormalized configuration, the linear term including the
shift from the cubic HamiltonianH (3)

SW can vanish:H (1)
SW + δH (1)

SW = 0.Moreover, the
renormalized parameters and additional quadratic term : δH (2)

SW : modify the mean-
field band dispersions E1,k and E2,k, which are calculated within the Gutzwiller-type
variational ansatz.
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Naively, it is expected that inclusion of the renormalization effect due to the fluc-
tuations should make the low-energy properties more quantitative. The fluctuation
correction, which is perturbatively incorporated around the mean-field state, leads
to, however, a finite gap opening of the NG branch. In general, the NGmode must be
gapless in the symmetry-broken phase in the thermodynamic limit. It seems that the
appearance of the finite gap in our perturbative scheme would be an artifact of this
approach. Moreover, whether the finite gap exists or not strongly affects the decay
processes of the Higgs mode because the possible scattering channels are restricted
by the on-shell energy-momentum conservation laws between the collective modes
[14]. Thus, in order to describe the stability of the Higgs mode corresponding to
experiments, we need to eliminate the finite gap from the NG mode branch.

The similar theoretical problem also happens in the well-known Hartree–Fock–
Bogoliubov (HFB) approximation for single component dilute Bose gases [15–18].
In this approximation, it is observed that an off-diagonal or anomalous average
of non-condensate bosons remains nonzero and leads to a gap opening in the low-
energy NG or Bogoliubov spectrum. Such an artificial energy gap is often eliminated
by the so called Popov–Shohno prescription [15, 18, 19], in which the anomalous
average is detuned by hands such that the artificial gap vanishes. Nevertheless, the
generalization of this prescription to our case is not straightforward because our
spin-wave bosons possess two flavors corresponding to the Higgs and NG modes.
Therefore, in this Thesis, we do neglect themodification of themean-field variational
parameters as a simpler prescription. Our prescription done in this Thesis is similar
in spirit to the standard Bogoliubov approximation for dilute Bose gases [20]. We
expect that this treatment becomes better as the spatial dimension of the system
increases and the temperature decreases.

In addition to such a prescription, we also neglect the normal-ordered quartic
term : H (4)

SW : throughout our analysis. Within our lowest order O(S0), the term only
generates a shift of the peak position of the Higgs mode, but no contribution to the
peak width itself. Moreover, the shift is expected to be rather small at sufficiently
low temperatures. Thus, it makes no important difference whether the quartic term
exists or not, as far as the problem of the stability of the Higgs mode is concerned.

Wewould like to close this sectionwith the followingnormal-orderedHamiltonian
up to the third-order term:

HSW = const.+ : H̃ (2)
SW : + : H (3)

SW : . (4.22)

This model will be a starting point of our field-theoretical calculations for analyzing
the linear-response functions.

4.3 Linear Response Analysis

In this section, we study the linear response functions, Eqs. (4.1) and (4.4), for the
normal-ordered spin-wave Hamiltonian (4.22). We develop a diagrammatic pertur-
bation theory for calculating imaginary-time Green’s functions at nonzero temper-
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atures. This Thesis has no part for reviewing the finite-temperature quantum field
theory for a system of Bose particles. For instructive explanations associated with
this theoretical technique, see textbooks, e.g., Refs. [21–23].

4.3.1 Response Functions to the External Modulations

In the spin-wave theory, arbitrary operators in the original model are expressed by
means of the spin-wave operators in the diagonalized basis, i.e., βm,k. Let us derive
the spin-wave representation of the K -to-K response function (4.1). Using the HP
expansion (2.57) and performing the Bogoliubov transformation (4.13), the kinetic
energy K becomes

K = N A0 + √
Nϒ1(β

†
1,0 + β1,0) + · · · . (4.23)

The coefficientϒ1 is a functional of the coefficient of the Bogoliubov transformation
at k = 0:

ϒ1 = A1[u11(0) + v11(0)] + B1[u21(0) + v21(0)]. (4.24)

It should be noted that the rest of the terms in Eq. (4.23) includes a linear term,
which is proportional to β2,0 + β

†
2,0. Here, β2,0 corresponds to the zero energy mode

of the system. We can easily check that the coefficient of β2,0 + β
†
2,0 should be zero

because of the property of the eigenvalue equation for [u12(0), v12(0), u22(0), v22(0)]
in Eq. (4.18). As shown below, the zero-mode contribution to the linear response
functions is therefore eliminated from our analysis.

Substituting Eq. (4.23) into the definition of DR
KK (t − t ′) and keeping leading-

order terms, we obtain the approximate response function

DR
KK (t − t ′) = N |ϒ1|2

{
GR

13,0(t − t ′) + GR
31,0(t − t ′)

+GR
11,0(t − t ′) + GR

33,0(t − t ′)
}
. (4.25)

To express this function, we have introduced four types of retarded Green’s function
for the zero-momentum Higgs-mode operators, i.e., β1,0 and β

†
1,0:

GR
13,0(t − t ′) = −i�(t − t ′)〈[β1,0(t), β

†
1,0(t

′)]〉eq,
GR

11,0(t − t ′) = −i�(t − t ′)〈[β1,0(t), β1,0(t
′)]〉eq,

GR
31,0(t − t ′) = −i�(t − t ′)〈[β†

1,0(t), β1,0(t
′)]〉eq, (4.26)

GR
33,0(t − t ′) = −i�(t − t ′)〈[β†

1,0(t), β
†
1,0(t

′)]〉eq.

Higher-order terms eliminated from the expansion correspond to multi-spin-wave
propagators, which are negligible if the fluctuations are sufficiently small. Thus, up to
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the leading order, evaluating the response function DR
KK (t − t ′) is reduced to calcu-

lating the retarded Green’s functions for the Higgs mode. The Fourier transformation
of Eq. (4.25) with respect to the time argument provides the dynamical susceptibility
associated with the kinetic-energy modulation as seen in Eq. (4.3). Now the Higgs
mode is captured as a characteristic pole in the retarded single-particle propagators
for the collective quasi-particle excitation.

Similarly, one can expand the O-to-O response function (4.4) in the Bogoliubov
operators. Keeping terms up to the linear order, the onsite interaction energy O is
approximated to

O = N Ã′
0 + √

Nϒ2(β
†
1,0 + β1,0) + · · · . (4.27)

The coefficient ϒ2 is defined by

ϒ2 = Ã′
1[u11(0) + v11(0)], (4.28)

and the constants Ã′
0 and Ã′

1 are given by

Ã′
0 = 1

2
s21 , Ã′

1 = −1

2
s1c1. (4.29)

The expansion (4.27) has no zero-mode term of β2,0 + β
†
2,0 for the same reason

as Eq. (4.23). Plugging Eq. (4.27) into DR
OO(t − t ′) and neglecting higher-order

corrections, we have

DR
OO(t − t ′) = N |ϒ2|2

{
GR

13,0(t − t ′) + GR
31,0(t − t ′)

+GR
11,0(t − t ′) + GR

33,0(t − t ′)
}
. (4.30)

The dynamical susceptibilityχOO(ω) is given by the real-timeFourier transformation
of this equation [see also Eq. (4.5)].

Within the leading order, the form of the O-to-O response function is the same as
that of the K -to-K response function except for the coefficients |ϒ1|2 and |ϒ2|2. In
Fig. 4.1,we show the chemical potential dependence of the coefficients at n̄ = n0 = 1
and u = 1. The point indicated by a solid arrow in Fig. 4.1 is at the commensurate
filling rate n0, and the corresponding chemical potential is expressed by μn0 whose
explicit form is presented by Eq. (2.53). As depicted in Fig. 4.1, it is found that
the coefficients completely coincide with each other for any μ. Hence, there is no
difference between two response functions, at least, within our approximation. We
note that for other values of n0 and u two curves also coincide with each other.
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Fig. 4.1 μdependence of the coefficients |ϒ1|2 and |ϒ2|2, respectively. In this figure, the parameters
are n0 = 1 and u = 1 (z J/U = 0.25). The solid (dashed) line expresses |ϒ1|2/U2 (|ϒ2|2/U2)
corresponding to the hopping (onsite-interaction) modulation. The solid arrow indicates the unit
filling case n̄ = n0 = 1. The mean filling rate n̄ decreases as μ decreases. Below μ ≈ −0.75, n̄
becomes zero. (This figure is reproduced from Ref. [25]. Copyright © 2018 American Physical
Society. All rights reserved)

4.3.2 Imaginary-Time Green’s Functions

Weanalyze the retarded single-particleGreen’s functions in linear response functions
(4.25) and (4.30) by using techniques of the finite-temperature quantum-field theory.
Let us consider three imaginary-time single-particle Green’s functions, where the
time-dependent field operators are ordered in time along the imaginary-time axis
[21–23]:

G1,k(τ − τ ′) = −〈Tτ β1,k(τ )β
†
1,k(τ

′)〉eq + 〈β1,0(0)〉eq〈β†
1,0(0)〉eq,

F1,k(τ − τ ′) = −〈Tτ β1,k(τ )β1,−k(τ
′)〉eq + 〈β1,0(0)〉2eq,

F†
1,k(τ − τ ′) = −〈Tτ β

†
1,−k(τ )β

†
1,k(τ

′)〉eq + 〈β†
1,0(0)〉2eq.

Here, Tτ indicates the imaginary-time ordering for field operators, and τ, τ ′ ∈ [0, β].
The last two functions are referred to as anomalous Green’s functions in some con-
texts [21, 22] because they can vanish if the quantum state of the system has a
conserved quasi-particle occupation.

We suppose that the imaginary-time Green’s functions are periodic along the time
direction. Intuitively, the domain of definition looks like a closed strip with the length
of the inverse temperatureβ [21–23].One can decompose them into the Fourier series
in theMatsubara frequency space. The coefficients of such a decomposition are given
by
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G1,k(iωn) =
∫ β

0
dτG1,k(τ )eiωnτ ,

F1,k(iωn) =
∫ β

0
dτ F1,k(τ )eiωnτ ,

F †
1,k(iωn) =

∫ β

0
dτ F†

1,k(τ )eiωnτ ,

whereωn = 2πn/β (n ∈ Z) is theMatsubara frequency for bosons [21–23]. It should
be noted that a relation F †

1,k(iωn) = F1,k(−iωn) holds for any n, at least, within our
leading order O(S0). In fact, this is verified by a straightforward calculation based
on the perturbative expansion. According to more general consideration [22], this
relation is expected to be true at any order of the perturbation series.

For a fixed ωn and at k = 0, the imaginary-time Green functions G1,k(iωn) and
F1,k(iωn) obey Dyson’s equation as follows [21, 22]:

G1,0(iωn) = G(0)
1,0(iωn) + G(0)

1,0(iωn)�11(iωn)G1,0(iωn)

+ G(0)
1,0(iωn)�02(iωn)F1,0(−iωn),

F1,0(iωn) = G(0)
1,0(iωn)�11(iωn)F1,0(iωn) + G(0)

1,0(iωn)�02(iωn)G1,0(−iωn),

where �11(iωn) and �02(iωn) are the self-energy functions for the normal and
anomalous Green’s functions. Here,

G(0)
1,0(iωn) = 1

iωn − �
(4.31)

is the non-interacting propagator of the Higgs mode with k = 0, where the charac-
teristic pole is centered at the energy gap position �, i.e., the mean-field Higgs gap.
Since the Dyson equation is closed up to the single-particle Green’s functions, we
can solve it formally with respect to G1,0(iωn) and F1,0(iωn) [21, 22]. The solutions
are simply given by

G1,0(iωn) = − 1

D

{[
G(0)

1,0(−iωn)
]−1 − �11(−iωn)

}

, (4.32)

F1,0(iωn) = − 1

D
�02(iωn). (4.33)

The denominator D defined by

D = [�02(iωn)]
2 − [iωn − � − �11(iωn)] [−iωn − � − �11(−iωn)] , (4.34)

characterizes the poles of these Green’s functions, whose properties are modified
due to the self-energy effects. The self-energy corrections can arise when non-linear
terms in the Hamiltonian perturb free propagation of the quasi-particle excitations.
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Calculating such corrections bymeans of the normal-ordered spin-waveHamiltonian
will be a main subject in the next section.

Let us briefly see the relationship between our imaginary-time functions and
the real-time response functions. In the linear response theory, retarded correlation
functions associated with physical quantities can be obtained from an analytical
continuation procedure for corresponding imaginary-time Green’s functions [23].
The latter ones are given as a set of discrete data points distributed along an imaginary
axis on a complex plane z̃, and they are typically computed by some techniques, e.g.,
field theoretical perturbation theories or quantum Monte-Carlo methods. To get the
retarded functions, the data for all positive frequencies n > 0 are mapped onto a
horizontal line that lies along nearby the real axis of the complex plane; it is a
cutting line given by z̃ = ω + iε where ε > 0 is infinitesimally small [23]. We note
that the points for negative frequencies n < 0 correspond to the so called advanced
correlation functions at z̃ = ω − iε.

As an advantage, the perturbative approach that we use allows us to find concrete
analytical forms of the imaginary-time Green’s functions and self-energy functions.
If we know the self-energy functions as a function of ωn , the analytical continuation
can be performed by just making a replacement as iωn → ω + iε. Then, we can have
the Fourier transformation of Eq. (4.26) in such a way that

GR
13,0(ω) = G1,0(iωn)

∣
∣
iωn→ω+iε ,

GR
11,0(ω) = F1,0(iωn)

∣
∣
iωn→ω+iε ,

GR
31,0(ω) = G1,0(−iωn)

∣
∣
iωn→ω+iε

, (4.35)

GR
33,0(ω) = F1,0(−iωn)

∣
∣
iωn→ω+iε .

For the last equality, we used F †
1,0(iωn) = F1,0(−iωn). Using these results, the

dynamical susceptibilities, χKK (ω) and χOO(ω), read

χKK (ω) = N |ϒ1|2
{
GR

13,0(ω) + GR
11,0(ω) + GR

31,0(ω) + GR
33,0(ω)

}
, (4.36)

χOO(ω) = N |ϒ2|2
{
GR

13,0(ω) + GR
11,0(ω) + GR

31,0(ω) + GR
33,0(ω)

}
. (4.37)

The final expressions are important for us because those characterize the spectral
property of the Higgs mode resonance when the mode is kicked out by the external
modulations. The numerical evaluation of them will be presented in Sect. 4.4.

4.3.3 One-Loop Self-energy Functions

We calculate the self-energy functions by using Feynman’s perturbative technique
with a diagrammatic expression of physical processes scattered by interactions. We
focus on the lowest order contributions that are obtained from the second order
perturbation of : H (3)

SW :. The expansion is stopped up to 1-loop order, i.e., O(S0).
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First, let us calculate the self-energy function �11(iωn). The 1-loop contributions
to this function are shown in Fig. 4.2. This 1-loop result can be divided into four
different parts

�11(iωn) = �
(a)
11 (iωn) + �

(b)
11 (iωn) + �

(c)
11 (iωn) + �

(d)
11 (iωn). (4.38)

These are given by

�
(a)
11 (iωn) = − 1

2N

∑

k1∈�0

M[333]
0,k1,−k1M

[111]
k1,−k1,0

1 + 2nB[E1,k1 ]
iωn + 2E1,k1

− 1

2N

∑

k1∈�0

M[344]
0,k1,−k1M

[221]
k1,−k1,0

1 + 2nB[E2,k1 ]
iωn + 2E2,k1

− 1

N

∑

k1∈�0

M[334]
0,k1,−k1M

[211]
−k1,k1,0

1 + nB[E1,k1 ] + nB[E2,k1]
iωn + E1,k1 + E2,k1

, (4.39)

�
(b)
11 (iωn) = 1

2N

∑

k1∈�0

M[311]
0,k1,−k1M

[331]
k1,−k1,0

1 + 2nB[E1,k1 ]
iωn − 2E1,k1

+ 1

2N

∑

k1∈�0

M[322]
0,k1,−k1M

[441]
k1,−k1,0

1 + 2nB[E2,k1 ]
iωn − 2E2,k1

+ 1

N

∑

k1∈�0

M[312]
0,k1,−k1M

[341]
k1,−k1,0

1 + nB[E1,k1 ] + nB[E2,k1]
iωn − E1,k1 − E2,k1

, (4.40)

�
(c)
11 (iωn) = − 1

N

∑

k1∈�0

M[332]
0,k1,k1M

[411]
k1,k1,0

nB[E2,k1] − nB[E1,k1 ]
iωn + E1,k1 − E2,k1

− 1

N

∑

k1∈�0

M[312]
0,k1,k1M

[341]
k1,k1,0

nB[E1,k1] − nB[E2,k1]
iωn + E2,k1 − E1,k1

, (4.41)

�
(d)
11 (iωn) = − 1

N

∑

k1∈�0

M[332]
0,0,0M

[411]
k1,0,k1

1

�
nB[E1,k1]

− 1

N

∑

k1∈�0

M[341]
0,0,0M

[321]
0,k1,k1

1

�
nB[E1,k1]

− 1

N

∑

k1∈�0

M[331]
0,0,0M

[311]
k1,0,k1

1

�
nB[E2,k1] (4.42)

− 1

N

∑

k1∈�0

M[311]
0,0,0M

[442]
k1,0,k1

1

�
nB[E2,k1].

Here, nB(x) = (eβx − 1)−1 is the equilibrium Bose distribution function at temper-
ature T . To get a simple expression, we introduced a symmetrized vertex coefficient
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Fig. 4.2 Leading 1-loop order contributions to the normal Green’s function G1,0(iωn) and cor-
responding self-energy functions. The momenta and frequencies with an integer suffix imply the
summation over possible internal states. The solid line denotes the non-interacting Higgs-mode
propagator while the dashed one represents a free propagation of the NGmode. The arrow pointing
to the left direction in the first column represents the zeroth-order Green’s function of the Higgs
mode. The diagrams in each column form an individual group labeled by �

(a)
11 (iωn), �

(b)
11 (iωn),

�
(c)
11 (iωn), or �

(d)
11 (iωn). (This figure is reproduced from Ref. [25]. Copyright © 2018 American

Physical Society. All rights reserved)

M[l1l2l3]
k1,k2,k3 = M(l1l2l3)

k1,k2,k3 + M(l1l3l2)
k1,k3,k2 + M(l2l1l3)

k2,k1,k3 + M(l2l3l1)
k2,k3,k1 + M(l3l1l2)

k3,k1,k2 + M(l3l2l1)
k3,k2,k1 .

(4.43)

Most dominant contributions to the decay of theHiggsmode stem from�
(b)
11 (iωn).

This part corresponds to the Beliaev damping process where one Higgs mode with
zero momentum collapses into two NG modes with opposite momenta k and −k
with satisfying the on-shell energy and momentum conservation, i.e., E1,0 − E2,k −
E2,−k = 0. The Beliaev damping is a fundamental decay process of the Higgs mode
in the Bose–Hubbard systems. This type of damping of the Higgs mode has been
studied in some literature, in which its damping rate is calculated for n0 � 1 at zero
temperature [24] and at nonzero temperatures [14]. In particular, in the former article
by Altman and Auerbach [24], the zero-temperature damping rate was calculated by
combining the effective pseudspin-1 model approach and Fermi’s golden rule.

In our previous study on the basis of the finite-temperature quantum field theory
[14], we have calculated the damping rate � ≡ −Im�11(iωn)|iωn→ω+iε only at a
resonant position ω = E1,0 = � in order to qualitatively estimate the stability of the
Higgs mode in experimental systems. Our results presented in this Thesis generalize
this analysis such that the real and imaginary parts of the self-energy function are
taken into account even at off-resonant frequencies. In particular, the real part of
this function gives a mass renormalization to the mean-field Higgs gap due to the
interactions between collective modes.

The contributions shown in Fig. 4.2 include some processes with an odd number
of NG modes. Such terms should vanish if one takes a large filling limit n0 � 1
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Fig. 4.3 Leading 1-loop order contributions to the anomalous Green’s function F1,0(iωn) and
corresponding self-energy functions. The diagrams in each column form an individual group labeled
by �

(a)
02 (iωn), �

(b)
02 (iωn), �

(c)
02 (iωn), or �

(d)
02 (iωn). See also Fig. 4.2. (This figure is reproduced

from Ref. [25]. Copyright © 2018 American Physical Society. All rights reserved)

because the explicit particle-hole symmetry is restored at this limit. The self energy
�

(c)
11 becomes relevant at n0 ∼ 1 and gives a thermal effect on the damping of the

Higgs mode. The corresponding exchange process of collective excitations can be
regarded as a Landau-type damping of the Higgs mode with absorbing an NG mode
from a thermal cloud and emitting a Higgs mode. In Ref. [14], it has been reported
that an interacting NG-mode propagator with a non-zero momentum shows a similar
damping, for which an injected NG mode attenuates into a Higgs mode via inter-
actions with a thermal cloud of NG modes. For further information about physics
of the Landau damping of collective excitations in Bose–Einstein condensates, see,
e.g., Ref. [18].

As well as the normal part, one can obtain the anomalous self energy �02(iωn)

within the leading order perturbation, and separate it into four parts: �02(iωn) =
�

(a)
02 (iωn) + �

(b)
02 (iωn) + �

(c)
02 (iωn) + �

(d)
02 (iωn). The contributions to this function

are expressed in Fig. 4.3. Each diagram appearing in �02(iωn) formally has the
same structure as the corresponding one of �11(iωn), except for the details of the
interaction vertices connecting with external lines. A direct calculation leads to the
following analytical expression of the separated functions:

�
(a)
02 (iωn) = − 1

2N

∑

k1∈�0

M[333]
0,k1,−k1M

[311]
0,k1,−k1

1 + 2nB[E1,k1]
iωn + 2E1,k1

− 1

2N

∑

k1∈�0

M[344]
0,k1,−k1M

[322]
0,k1,−k1

1 + 2nB[E2,k1]
iωn + 2E2,k1

− 1

N

∑

k1∈�0

M[344]
0,k1,−k1M

[312]
0,k1,−k1

1 + nB[E1,k1] + nB[E2,k1 ]
iωn + E1,k1 + E2,k1

, (4.44)

�
(b)
02 (iωn) = 1

2N

∑

k1∈�0

M[311]
0,k1,−k1M

[333]
0,k1,−k1

1 + 2nB[E1,k1]
iωn − 2E1,k1
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+ 1

2N

∑

k1∈�0

M[322]
0,k1,−k1M

[344]
0,k1,−k1

1 + 2nB[E2,k1]
iωn − 2E2,k1

+ 1

N

∑

k1∈�0

M[312]
0,k1,−k1M

[334]
0,k1,−k1

1 + nB[E1,k1] + nB[E2,k1 ]
iωn − E1,k1 − E2,k1

, (4.45)

�
(c)
02 (iωn) = − 1

N

∑

k1∈�0

M[332]
0,k1,k1M

[344]
0,k1,k1

nB[E1,k1] − nB[E2,k1]
iωn + E2,k1 − E1,k1

− 1

N

∑

k1∈�0

M[341]
0,k1,k1M

[332]
0,k1,k1

nB[E2,k1] − nB[E1,k1]
iωn + E1,k1 − E2,k1

, (4.46)

�
(d)
02 (iωn) = − 1

N

∑

k1∈�0

M[333]
0,0,0M

[311]
k1,k1,0

1

�
nB[E1,k1]

− 1

N

∑

k1∈�0

M[331]
0,0,0M

[331]
0,k1,k1

1

�
nB[E1,k1]

− 1

N

∑

k1∈�0

M[333]
0,0,0M

[421]
k1,k1,0

1

�
nB[E2,k1] (4.47)

− 1

N

∑

k1∈�0

M[331]
0,0,0M

[423]
k1,k1,0

1

�
nB[E2,k1].

An analytical evaluation of the momentum summation for each self-energy func-
tion is impossible in practice. Instead, in our analysis, we numerically compute the
retarded (or analytically continued) self-energy functions for the real-time propa-
gators, such as �R

11(ω) = �11(iωn)|iωn→ω+iε , for a fixed frequency after replacing
the summation with the corresponding integral, i.e.,

∑
k1∈�0

→ ∫ π

−π

∫ π

−π

∫ π

−π
dkxdky

dkz/(2π)3. As the integration scheme, we have chosen the standard trapezoidal rule
in a three-dimensional lattice space with a sufficiently large number of lattices. Once
the self-energy functions are numerically obtained, we can calculate the dynami-
cal susceptibilities χKK (ω) and χOO(ω) as functions of frequency with use of the
formulae (4.36) and (4.37).

4.4 Numerical Results

In this section, we show a numerical evaluation of the dynamical susceptibilities
that can be written in terms of the self-energy functions computed perturbatively.
To argue the stability of the Higgs mode in experiments, we focus especially on the
imaginary part of the susceptibility, which is nothing else but the spectral function for
the Higgs mode. In this Thesis, we present only the results when the kinetic-energy
modulation is applied because, as mentioned in Sect. 4.3, the response function of
this modulation completely coincides with that of the onsite-interaction modulation,
at least, within our spin-wave approximation.
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Fig. 4.4 Dynamical susceptibility at unit filling n0 = 1 and at zero temperature. The resonance
peak position increases away from the critical point uc ≈ 1.457. (This figure is reproduced from
Ref. [25]. Copyright © 2018 American Physical Society. All rights reserved)

4.4.1 Response Functions in the Uniform System

In this subsection, we show the imaginary part of the dynamical susceptibility subject
to no trapping potential in order to discuss the broadening of the resonance peak solely
due to quantum and thermal fluctuations. Figure 4.4 displays a curve corresponding
to Im [χKK (ω)] at the unit filling rate and at zero temperature. There, one can observe
that a Lorentzian-like curve appears and exhibits a sufficiently sharp resonance peak
corresponding to the Higgs mode. The center position of the peak defines a Higgs
gap, which is renormalized due to the interactions. The peakwidth corresponds to the
damping rate of the Higgs mode and takes a relatively small value compared with the
mass gap. The existence of such a sharp resonance peak implies that the Higgs mode
in the 3D system is stable within the lowest order correction of quantum fluctuations.
In addition, the position of the peak is shifted to the high-ω side as the dimensionless
parameter u leaves from the mean-field critical point u = uc. Table 4.1 shows each
value of the renormalized Higgs gap �∗ scaled by the corresponding Mott gap �MI,
which has a same relative distance from the critical point, ūrel = |u − uc|/uc, as that
of the Higgs gap. To make the gap dimensionless, we used the mean-field Mott gap
�MI = √

U 2 − 2J zU (2n0 + 1) + (J z)2, which is derived in Ref. [12].
We also see the similar behavior at a large filling rate n0 � 1 as shown in Fig. 4.5.

Figure 4.5 draws the frequency dependence of Im [χKK (ω)] at a large filling rate and
at zero temperature. Thewidth of this peak approximately coincideswith the damping
rate evaluated by using Fermi’s golden rule at a large filling rate [24]. It should be
noted that one can find another peak near ω = 0, which does not correspond to
the Higgs mode. Such an additional peak also appears in Fig. 4.4, i.e., in the case



4.4 Numerical Results 75

Table 4.1 Numerical values of the renormalized Higgs gap �∗ scaled by the Mott gap �MI. The
energy scales �∗ and �MI locate at a same relative distance ūrel from uc ≈ 1.457. Here, uo (ud )
is the corresponding value of u at a given ūrel = |u − uc|/uc in the ordered-superfluid (disordered-
insulator) side. (This table is reproduced from Ref. [25]. Copyright © 2018 American Physical
Society. All rights reserved.)

�∗/�MI �/�MI ūrel uo ud

0.890 1.081 0.314 1.000 1.914

1.057 1.206 0.382 0.900 2.014

1.251 1.359 0.451 0.800 2.114

Fig. 4.5 Dynamical susceptibility at a large filling rate n0 � 1 and at zero temperature. In this case,
the critical point is at u = uc = 1. (This figure is reproduced from Ref. [25]. Copyright © 2018
American Physical Society. All rights reserved)

of unit filling. This peak can be interpreted as an artifact of our method based on
the perturbative expansion around the mean-field limit. In fact, the real parts of the
self-energy functions become as large as the mean-field Higgs gap near ω = 0. This
means that the corrections to the Higgs gap, which are produced by the perturbative
expansionof the spinwaves, are no longer small comparedwith the zeroth-order value
of the energy gap. In other words, it turns out that our perturbative approximation
of the response function breaks down especially near ω = 0. Nevertheless, around
the renormalized Higgs-peak position at ω = �∗, the corrections are sufficiently
small compared to the mean-field gap �. This means that our approach is valid
around the Higgs-gap energy scale, which we are especially interested in. For the
(3 + 1)-dimensional relativistic O(N ) scalar model in quantum field theory, a similar
breakdown of the perturbation theory and leading to an additional peak near zero
frequency happen as a result of the logarithmic infrared divergence of the self-energy
function [26]. We have to emphasize that in contrast to the infrared divergence of the
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Fig. 4.6 Dynamical susceptibility at unit filling n0 = 1 and at typical temperatures, especially for
u = 1 (z J/U = 0.25). The temperature is measured by units of J . (This figure is reproduced from
Ref. [25]. Copyright © 2018 American Physical Society. All rights reserved)

self-energy function, our naive perturbation approach fails to capture the logarithmic
corrections that appear as a result of renormalization of themarginal terms [27]. Such
a careful renormalization treatment has not been done in our analysis.

Next, we incorporate nonzero-temperature effects on the susceptibility. Figure 4.6
shows several susceptibilities at u = 1 and at different temperatures until T = 2J .
This result means that the thermal fluctuation only makes the peak width slightly
broader. The resonance peak in the spectral function is therefore quite robust against
thermal fluctuations at sufficiently low temperatures. It should be noted that the
temperature of real experiments is typically of order J . Hence, we conclude that the
Higgs resonance peak survives in the unit-filling spectral function even at typical
temperatures. Our result in three dimensions is in contrast to the case of the two-
dimensional (2D)Bose–Hubbardmodel. Pollet and Prokof’ev numerically computed
the spectral function associated with the kinetic-energy modulation by means of
quantum Monte-Carlo simulations [6]. Their result implies that the resonance of the
Higgs mode becomes rather broad due to quantum and thermal fluctuations even
when the system is supposed to be uniform.

It is worth noting that in Ref. [14] the damping rate of the Higgs mode with zero
momentum has been calculated analytically and numerically by using the finite-
temperature field theoretical method at large filling and shows that the Higgs mode
in three dimensions is sufficiently stable against thermal fluctuations at typical tem-
peratures of experiments. The finite-temperature susceptibility shown in Fig. 4.6
extends this large filling result to more realistic cases as the setup of Ref. [2].
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4.4.2 Effects of a Trapping Potential

Here we incorporate the non-uniform trapping-potential effects within the local den-
sity approximation (LDA). As a specific shape of the trapping potential, we assume
a parabolic and isotropic potential, which is given by

Vtrap(r) = mω2
0

2
r2, (4.48)

where m is the atomic mass and ω0 is the frequency of the potential. We note that
the center of the trap at r = 0 corresponds to a largest occupation over the whole
system. According to the conventional LDA [20], the effect of the inhomogeneity is
approximately treated by the general formula

χlda(ω) = 4π
∫ R

0
drr2n̄′[μ(r)]χunif [ω,μ(r)]. (4.49)

Here, χunif(ω,μ) is the bulk susceptibility, which is either Eqs. (4.3) or (4.5) divided
by the factor N and computed at a fixed chemical potential.Within LDA, the potential
leads to a spatially-dependent chemical-potential shift asμ(r) = μn0 − Vtrap(r). The
weight function for this averaging is given by n̄′[μ], which is normalized such that

n̄′[μ(r)] = n̄[μ(r)]
4π

∫ R
0 drr2n̄[μ(r)] , (4.50)

where the integration upper bound, R, indicates the radius of the spherical region,
in which atoms are perturbed by the temporal modulation of J or U . n̄[μ(r)] is the
local density of atoms at radial distance r . When the modulation is applied to the
whole system, R should be equal to the Thomas–Fermi (TF) radius RTF, at which
the density vanishes. In what follows, we assume that at the trap center the density
is tuned to unity, i.e., n̄[μn0 ] = n0 = 1.

4.4.3 Response Functions at R = RTF

We analyze the response function to the global J or U modulation of the whole
system. In this case, the radial integral in Eq. (4.49) is done from R = 0 to R = RTF.

Figure 4.7a shows the ω dependence of Im [χlda(ω)] at T = 0 and u = 1. In the
same plot, we also display the spectral function in the absence of the potential (4.48).
One can observe that the resonance peak, which would be rather sharp without the
trapping potential, is significantly broadened due to the inhomogeneity effect so that
the peak width is as large as the Higgs gap�H. In this sense, one can no longer regard
the response as a well-defined resonance peak. Figure 4.7b is a magnified scale plot
of the same LDA susceptibility.
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Fig. 4.7 a Comparison of susceptibilities computed for trapped (solid line) and homogeneous
(dashed line) systems at T = 0 and u = 1. At the trap center, the atomic density is tuned to unity,
i.e., n0 = 1. b Magnifying the dynamical susceptibility of the trapped system at T = 0. In order
to obtain a smooth line from a finite number of LDA data, we have used the spline interpolation
method. (This figure is reproduced from Ref. [25]. Copyright © 2018 American Physical Society.
All rights reserved)

The broadening of the resonance peak can be attributed to that when we apply
the modulation globally to the whole system, all the subsystems corresponding to
n̄ ∈ [0, 1] contribute to the resulting response. Specifically, the gap at n̄ < 1 is larger
than that at n̄ = 1 and the high-energy contributions far from the trapping center
obscure the well-defined Higgs resonance.

In Fig. 4.7b, we also find a fine structure of the response in the region of 0.7U <

ω < 1.0U . This structure means that the response of the bulk gapful mode at a
certain value of μ, which gives �H � 0.75U (0.85U ), is locally strong (weak). It
is interesting to examine in future experiments whether or not the emergence of the
fine structure is an artifact of LDA.

While the resonance peak in the response is completely smeared out by the non-
uniform trap, a characteristic feature of the Higgs mode in the bulk is still visible in
the averaged susceptibility of the trapped system. Specifically, the onset frequency
of the response is almost equal to the bulk Higgs gap at n̄ = 1. This property has
been found also in the 2D quantum Monte-Carlo simulation [6] and indeed utilized
to measure the Higgs gap in the quantum-gas microscope experiment [2].

4.4.4 Responses Around the Trapping Center

In this subsection, we investigate responses of the system to a partial modulation,
which excites atoms only inside the spherical region characterized by the condition
R < RTF. This type of modulation technique allows one to eliminate undesired con-
tributions from the low-density area that broaden the resonance of the Higgs mode.
A similar analysis in two dimensions has been done in Ref. [4]. In what follows, we
set u = 1 corresponding to the stable Higgs mode in the uniform case.
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Fig. 4.8 Dynamical susceptibility for the trapped system, where the atoms are partially modulated
with Rmod/RTF = 0.49 (dashed line), 0.57 (dotted line), and 1.00 (dashed-dotted line), respectively.
The susceptibility approaches the uniform result (solid line) when we take the limit of Rmod → 0.
Here, we set u = 1 (z J/U = 0.25) and T/J = 0. The filling factor at the trap center is tuned to
unity (n0 = 1). (This figure is reproduced from Ref. [25]. Copyright © 2018 American Physical
Society. All rights reserved)

We define the radius for the partial modulation as Rmod. In the units of RTF, the
modulation radius Rmod reads

Rmod

RTF
=

√
μn0 − μmod

μn0 − μTF
, (4.51)

where μmod = μ(Rmod) and μTF = μ(RTF). In particular, one can easily verify that
μTF = −0.75U for u = 1. The LDAcalculation is nothing else but putting R = Rmod

in Eq. (4.49).
Figure 4.8 shows Im [χlda(ω)] as a function of ω at zero temperature for different

values of Rmod. When Rmod/RTF = 0.49, the modulation is added to a subregion
of n̄ ≥ 0.90. In this case, the shape of the resonance peak in the resulting response
function is well approximated as a Lorentzian function and the peak width is clearly
smaller than the peakposition. In otherwords, for thismodulation radius, the response
is still a sharp resonance peak. We also find that the peak position is slightly shifted
to the high-energy side due to the contribution from the low-density region.

When Rmod/RTF is increased, the response becomes broader to approach the result
at Rmod = RTF (See the dash-dotted line in Fig. 4.8). When Rmod/RTF = 0.57, at
which a subregion of n̄(r) ≥ 0.85 is modulated, the response is significantly broader
than that of Rmod/RTF = 0.49 and the shape of the response function noticeably
deviates from a Lorentzian function. Thus, our results indicate that the condition that
Rmod < 0.5RTF is required for a sharp resonance peak to be observed.
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Fig. 4.9 Finite-temperature effects on the dynamical susceptibility of the trapped system at u = 1
and Rmod/RTF = 0.49. The distinct lines correspond to T/J = 0 (solid line), T/J = 1 (dashed
line), and T/J = 2 (dotted line), respectively. At the trap center, the atomic density is tuned to
unity (n0 = 1). (This figure is reproduced from Ref. [25]. Copyright © 2018 American Physical
Society. All rights reserved)

For the case of Rmod/RTF = 0.49, let us consider finite-temperature effects on
the LDA susceptibility of the partial modulation. Each line plotted in Fig. 4.9 is the
result at a temperature until T = 2J . Our results reveal that even in the presence of
the trap potential, the resonance peak is robust against thermal fluctuations at typical
temperatures of order J . This kind of robustness to thermal fluctuations is not related
with the specific choice of Rmod because the similar feature can be observed in the
uniform cases. According to this result, it is expected that one can detect and identify
the well-defined resonance of the Higgs mode in a 3D Bose gas system trapped by a
parabolic potential. The detection procedure requires a partial modulation of J orU
over a radius Rmod ≤ RTF, and it is, in principle, possible in real experiments. Herewe
emphasize that the tendency of the temperature dependence in 3D systems is distinct
from that in 2D systems [4]. In 2D systems, it has been numerically verified that the
response function of a partial modulation significantly depends on the temperature.
It means that the Higgs-mode peak in two dimensions is obscured due to thermal
fluctuations when T > J even for partial modulations.

4.5 Summary of This Chapter

In conclusion of this chapter, we performed a field theoretical analysis of the linear
response functions for the 3D Bose–Hubbard model and investigated the combined
effects of quantum and thermal fluctuations, and inhomogeneous parabolic trapping
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potential on the detectability of a sharp Higgs-mode resonance in actual experi-
ments. The uniform susceptibility, which has been numerically evaluated at unit
filling, showed that the Higgs-mode resonance can survive as a sharp peak in the
dynamical susceptibility even at typical temperatures of experiments until T = 2J .
The parabolic-potential effect on the response function has been treated within LDA.
The LDA result indicated that the resonance peak is significantly broadened due to
the trapping potential when the global modulations are applied to the system. In order
to remove the undesired continuum hiding the Higgs mode resonance, we performed
a partial modulation around the trap center and looked at the resulting response.
The results subject to Rmod < 0.5RTF exhibited that the Higgs mode can exist as a
well-defined resonance at typical temperatures.
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Chapter 5
Semiclassical Quench Dynamics of Bose
Gases in Optical Lattices

Abstract This chapter is devoted to presenting applications of the truncatedWigner
approximation to far-from-equilibrium many-body dynamics explored in the quan-
tum simulator. We analyze redistribution dynamics of the kinetic and local interac-
tion energies after a sudden quantum quench in the three-dimensional Bose–Hubbard
model startingwith a strongly-correlatedMott insulator state. Applying the semiclas-
sical method, we also investigate quantum quench dynamics of spatial correlation
functions for interacting lattice bosons in two dimensions. We focus especially on
the initial state dependence of such dynamics observed in early-time processes of
correlation functions.

5.1 Far-from-Equilibrium Dynamics of the Bose–Hubbard
Model

In the previous chapter, we investigated dynamical properties of the optical lat-
tice system described by the Bose–Hubbard model near thermal equilibrium states.
This chapter is dedicated to studying more complex dynamics, namely, far-from-
equilibrium many-body dynamics of the Bose–Hubbard model in two and three
dimensions.

The system that we are focusing on is supposed to be completely isolated from
any external baths, so that the dynamics of its quantum state, which is represented by
the density operator ρ̂, are the unitary time evolution described by the von-Neumann
equation for the Bose–Hubbard Hamiltonian

i�
∂

∂t
ρ̂(t) = [Ĥ , ρ̂(t)], Ĥ = −J

∑

〈 j,k〉
(â†j âk + H.c.) + U

2

∑

j

â†j â
†
j â j â j . (5.1)

Notice that when the initial state at t = 0 is prepared in a pure state, this equation
reduces to the Schrödinger equation, which governs the unitary time evolution of
the many-body wave function. For a conserved atomic number Ntot and total lattice
number M , the number of the possible Fock states belonging to the relevant Hilbert
space HNtot,M is counted [1] as
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dimHNtot,M = (Ntot + M − 1)!
(M − 1)!Ntot! . (5.2)

It indicates that components of the state vector that must be stored in the memory of
computers grow exponentially as Ntot and M increase. This type of computational
complexity makes it difficult to treat many-body dynamics of macroscopic inter-
acting models as realized in ultracold-atomic quantum simulators. To simulate the
time evolution governed by the quantum-mechanical linear equations with classical
computers, one has to bring an approximate treatment to reduce such exponentially
many degrees of freedom to algebraically many ones.

To reduce such a complexity in two and three dimensions, in this Thesis, we adopt
the semiclassical truncated Wigner approximation (TWA), which has been already
reviewed in Chap. 3. Within TWA, one solves Hamilton’s equation with M numbers
of complex field, instead of directly treating the density operator or wave function
represented in HNtot,M . The quantum average of an operator �̂ at time t is given by
a weighed integration of the corresponding c-number function �W over the phase
space:

〈�̂(t)〉 ≈
∫

dα0dα∗
0W0(α0,α

∗
0)�W [αcl(t),α

∗
cl(t)]. (5.3)

For the Bose–Hubbard model, the classical trajectory αcl(t) is a solution of the
following Hamilton equation, obeying an initial condition αcl(t = 0) = α0 weighted
with the Wigner function W0:

i�
∂αcl, j

∂t
= ∂HW (αcl,α

∗
cl)

∂α∗
cl, j

,

= −J
∑

〈k〉 j
αk +U |α j |2α j −Uα j , (5.4)

HW = −J
∑

〈 j,k〉
(α∗

jαk + c.c.) + U

2

∑

j

(
|α j |4 − 2|α j |2 + 1

2

)
. (5.5)

where 〈k〉 j means all nearest-neighbor sites connected to the site j . One can say that
this is a discrete-type Gross–Pitaevskii equation. The total conserved number Ntot

enters into a parameter controlling the semiclassical expansion. In the current case,
it is nothing else but the inverse of the atomic density per site n̄ = Ntot/M .

The Bose–Hubbard model has a weakly fluctuating regime, where its interaction
parameter λ ≡ Un̄/J is far from the quantum phase transition point λc, i.e., λ � λc.
There, the TWA quantitatively captures quantum dynamics of the system until the
time t approaches a characteristic timescale tc [2–4]. When λ is close to the critical
value λc, the semiclassical treatment breaks down at short time due to the strong
fluctuations. Since λc ∝ n̄2, larger n̄ and/or smallerU/J implies larger tc [3, 4]. We
note that the semiclassical approximation becomes exact especially at U/J = 0 or
n̄ = ∞.
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In typical experiments including the three-dimensional (3D) experiment [5],
which we discuss in Sect. 5.3, n̄ is tuned to unity and λ is O(1). If one computes
time evolution of the one-dimensional (1D) Bose–Hubbard model with n̄ = 1 and
λ ∼ 1 within the TWA, it fails in much shorter time than O(�/J ) because of rather
small λc(= 3.367) [6]. In contrast, for the 3D case with the same parameters, it is
expected that the TWA is able to simulate the dynamics up to t ∼ �/J , because λ of
O(1) is sufficiently far from λc = 29.34 [7]. As wewill see in Sect. 5.3, the TWA can
reproduce characteristic early-time dynamics observed in the experiment [5] until
t ∼ �/J .

5.2 Experimental Details

In this section, we summarize the experimental setup of quench dynamics imple-
mented by Ref. [5]. In the laboratory, as a first step, one prepares a Bose–Einstein
condensate of ultracold 174Yb atoms in a cubic optical lattice with lattice spacing
dlat = 266 nm. The setup has the recoil energy ER/� = 2π × 4021.18 Hz, which
gives a characteristic energy scale of this system. In the experiment, measuring non-
equilibrium dynamics of the system has been done according to the following steps:

1. Preparing the initial state: Starting from the prepared Bose–Einstein con-
densate, the optical lattice depth V0 is adiabatically ramped up to V0 = 15ER

(U/J = 99.4), at which atoms can form a Mott-insulator state. The filling factor
of atoms per site is tuned to almost unity over the whole system. The total number
of atoms is typically of the order of 104 [5].

2. Decreasing the lattice depth: To prepare a far-from-equilibrium state of atoms,
one abruptly ramps down the lattice depth from V0 = 15ER to V0 = 5ER. The
time during the ramp-down process is tf = 0.1 ms. The final lattice depth implies
U/J = 3.41. For this interaction strength, the ground state is in the deep superfluid
regime, where the system is sufficiently far from the quantum critical point [7].

3. Measuring time evolutions: The non-equilibrium state after the ramp-down pro-
cess can evolve towards an equilibrium state in time. One measures the time
evolution after the quench through the kinetic and onsite-interaction energies,
respectively. These are macroscopic quantities denoted by

K̂ = −J
∑

〈 j,k〉
(â†j âk + H.c.), Ô = U

2

∑

j

â†j â
†
j â j â j . (5.6)

The expectation values of these quantities are extracted from the time-of-flight
imaging and the high-resolution atom-number-projection spectroscopy, respec-
tively.

In the real setup, there is a parabolic potential to trap the atomic gas. In our analysis
presented later, we ignore the effects due to such a non-uniform trap. The reason is



86 5 Semiclassical Quench Dynamics of Bose Gases …

as follows: At the initial Mott-insulator state, the atomic density is almost uniform in
space so that the initial quantum state is well approximated as a direct-product wave
function, which is spatially uniform and composed of a local Fock state. Moreover,
the trapping potential gives no noticeable effect on the quench dynamics within the
time window t � �/J , in which the experiment was performed. This is because the
trap frequency is much smaller than J/�. For details, see Ref. [5].

5.3 Numerical Simulation of the Redistribution Dynamics

In this section, we explain details of our numerical simulation for the redistribution
dynamics. Using the results shown in Chap. 3 and above, we obtain approximate
expectation values of K̂ and Ô at time t , given by

〈K̂ (t)〉 ≈
∫

dα0dα∗
0W (α0,α

∗
0)KW

[
αcl(t),α

∗
cl(t)

]
, (5.7)

〈Ô(t)〉 ≈
∫

dα0dα∗
0W (α0,α

∗
0)OW

[
αcl(t),α

∗
cl(t)

]
. (5.8)

Here,

KW (α,α∗) = −J
∑

〈 j,k〉

[
α∗
jαk + c.c.

]
, (5.9)

OW (α,α∗) = U

2

∑

j

[
|α j |4 − 2|α j |2 + 1

2

]
. (5.10)

are the Weyl symbols of K̂ and Ô , respectively.
Here we note the derivation of KW (α,α∗) and OW (α,α∗) for an exercise. The

shortest way could be employing the Bopp-operator representation of the Bose oper-
ators â j and â

†
j , which have been introduced in Chap. 3. In fact, with use of the Bopp

operators, â†j âk and â
†
j â

†
j â j â j are mapped to a classical function such that

â†j âk →
(

α∗
j − 1

2

∂

∂α j

)
αk

= α∗
jαk − 1

2
δ j,k, (5.11)

â†j â
†
j â j â j →

(
α∗
j − 1

2

∂

∂α j

)(
α∗
j − 1

2

∂

∂α j

)
α2
j

= |α j |4 − 2|α j |2 + 1

2
. (5.12)
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The resulting functions are noting else but Eqs. (5.9) and (5.10). Adding these ones,
we also obtain HW in Eq. (5.5).

As seen in Sect. 5.1, the initial state before the quench is represented by a product-
state wave function |	ini〉 = ∏

j |n̄〉 j . Here |n̄〉 j is the number-definite Fock vector
characterized by n̂ j |n̄〉 j = n̄|n̄〉 j . The corresponding Wigner function WM(α,α∗) is
given by a direct product of the local Wigner function of the Fock-state vector |n̄〉 j
at each site, which was presented in Chap. 3. Thus, the Wigner function of the initial
state reads [4, 8–10]

WM(α,α∗) =
∏

j

2e−2|α j |2(−1)n̄ Ln̄(4|α j |2), (5.13)

where Ln(x) = ∑n
r=0(−1)r n!

(n−r)!(r !)2 x
r is the Laguerre polynomial of order n. The

classical field is parametrized asα j = |α j |eiϕ j . ThisWigner function is obviously not
positive along the amplitude direction |α j |, except for a trivial case n̄ = 0. The phase
of the classical field ϕ j distributes uniformly in [0, 2π ]. The Wigner function has an
explicit U(1) symmetry reflecting the restored symmetry inside the Mott-insulator
state. In fact, an arbitrary phase rotation for the phase-space variables, α j → α j ei ϕ̃ j ,
does not affect the Wigner function.

To calculate the expectation values in Eqs. (5.7) and (5.8), one has to evaluate the
phase-space integrationweightedwithWM(α,α∗). Typically, that is performed based
on a Monte-Carlo simulation using random numbers. The negativity of Eq. (5.13)
implies that the numerical Monte-Carlo integration requires many samples to reach a
converged result because the positive and negative parts can cancel each contribution
during the numerical sampling. To reduce such a difficulty, we adopt a Gaussian
Wigner function for the Fock state [8, 9]. Repeating the discussions in the previous
works [8, 9], the function for the Fock vector |n̄〉 has a general form as

Wg(n) = 1√
2πσ 2

e− 1
2σ2

(n−n0)2 , (5.14)

where n = |α|2. The mean n0 and covariance σ are free parameters determined from
the condition that the Gaussian function should exactly recover the first and second
order local moments of the density, i.e., 〈n̂ j 〉 and 〈n̂2j 〉. Direct calculations lead to the
following optimal choice:

n0 = n̄ + 1

2
, σ = 1

2
. (5.15)

It is worth noting that the (rescaled) higher-order moments n̄−m〈n̂mj 〉 form > 2 com-
puted by the Gaussian function agree with the exact ones up to O(n̄−2) [9]. While
the normalized Gaussian function gives rise to an unphysical negative density, how-
ever, it does not affect the phase-space average itself because the probability, which
corresponds to the Gaussian tail, is sufficiently small even at n̄ = 1. Similar treat-
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ments based on such a Gaussian ansatz are often used in TWA simulations starting
from several initial states [4, 8, 9, 11–14]. These studies manifest the validity of
the Gaussian approximation in describing short-time semiclassical dynamics within
the accuracy of TWA. Recently, an efficient numerical sampling scheme based on
the discrete-Wigner representation by Wootters [15] has been proposed beyond the
Gaussian approximation [16]. This method is basically applicable to systems with
a finite-dimensional Hilbert space such as spin-1/2 systems or two level systems.
However, we do not use this approach in this Thesis.

Now we summarize what should be done by using TWA in order to simulate
the experimental dynamics: We solve time evolutions of a time-dependent Bose–
Hubbard model Ĥ [λ(t)] by using the TWA. At t = 0, the Hamiltonian has λ = λi =
99.4 corresponding to V0 = 15ER. In the ramp-down process, λ(t) decreases with
V0(t), which declines linearly. Recall that the duration of the ramp-down process
is tf = 0.1 ms in the experiment. At t = tf , the lattice depth reaches V0 = 5ER,
which implies λ = λf = 3.41. At t > tf , the system evolves in time under the time-
independent Hamiltonian Ĥ [λf ]. The phase-space averaging with the Wigner func-
tion is evaluated by using the Monte-Carlo integration, where each initial configu-
ration of the classical fields, αcl(0), is randomly chosen from the Gaussian-Wigner
function (5.14).

5.3.1 Sudden Ramp-Down Limit

Before proceeding to a numerical simulation corresponding to the experimental
setup, we discuss a simpler problem, i.e., an infinitesimal-time limit of the ramp-
down process (tf = 0). In this case, the Hamiltonian is always independent of time at
t > 0. Accordingly, the semiclassical dynamics are governed by the post-quenched
classical Hamiltonian starting from a certain initial state.

Figure5.1 depicts a numerical simulation of the kinetic and interaction ener-
gies within TWA for tf = 0, where we set Ntot = M = 123 = 1728 and assume an
open boundary condition. To integrate the Gross–Pitaevskii equation, we adopted the
fourth-order explicit Runge–Kutta method with a sufficiently small time step. We
clearly see that the semiclassical approach captures fast redistribution of the kinetic
and interaction energies even at the level of the sudden quench limit. The timescale
of the redistribution is on the order of 0.1 ms and comparable to the experimental
result. In addition, the sum of the energies, i.e., Etot = 〈K̂ (t)〉 + 〈Ô(t)〉 completely
maintains its initial value because the Hamiltonian of the system is independent of
time.

We note that the numerical curves in Fig. 5.1 have an estimation error due to
the Monte-Carlo sampling. In this simulation, we sampled nmc = 100 000 random
classical fields according to Eq. (5.14). Because the standard error of the sampling
scales with 1/

√
nmc, we do not display numerical error bars, which are sufficiently

small.



5.3 Numerical Simulation of the Redistribution Dynamics 89

Fig. 5.1 TWA dynamics of the kinetic and onsite-interaction energies (green-dotted and blue-solid
lines) after the sudden quench from the singly-occupied Mott-insulator state. The red-dashed line
represents the total sum of these energies. The finite-time ramp down process is not included in
this simulation (tf = 0). We set Ntot = M = 123 and λf = 3.41. and note 0.6 ms ≈ �/J , where J
is the hopping amplitude after the quench. (This figure is reproduced from Ref. [17]. Copyright
c© 2019 American Physical Society. All rights reserved.)

We emphasize that the redistribution dynamics such as Fig. 5.1 cannot be recre-
ated by means of naive mean-field theories without fluctuations. Those include the
mean-field Gross–Pitaevskii theory, in which the dynamics are described as a single
realization of trajectory in the coherent-state phase space, and the Gutzwiller varia-
tional method, in which the many-body wave function is approximately represented
as a direct product state over the whole lattice. Intuitively, the initial noise perturbing
the classical field plays a role of initial seed to push the system into the superfluid
side.

5.3.2 Finite-Time Ramp-Down Process

To simulate the actual setup, we take into account the finite-time ramp-down process
in V0(t). The hopping strength J and the onsite-interaction strength U vary with
V0(t) as depicted in Fig. 5.2. We note again that V0(t) linearly decreases in time from
V0(0) = 15ER to V0(tf) = 5ER where tf = 0.1ms. In this process, the system passes
through the Mott-insulating and the quantum critical regimes where the quantitative
validity of TWA is justified only in rather short time t � O(�/J ). Nevertheless,
our approach is expected to be able to explain the redistribution dynamics after the
quench because the system actually leaves away from these regimes in the short time.
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Fig. 5.2 Lattice-depth dependence of (a) the hopping strength J and (b) the onsite-interaction
strength U , respectively. The horizontal axis, V0, means the lattice depth. To measure the energies,
we used the units of the recoil energy ER. (This figure is reproduced from Ref. [17]. Copyright
c© 2019 American Physical Society. All rights reserved.)

In Fig. 5.3, we show TWA results of 〈K̂ (t)〉 and 〈Ô(t)〉 including the ramp-down
process. The numerical simulation is performed with an open boundary condition
and at M = Ntot = 303 = 27 000, which is comparable to the size of the actual
system. To obtain a converged result, we sampled nmc = 10 000 initial conditions
according to Eq. (5.14). Compared with the sudden-limit calculation, the ramp-down
process significantly modifies the value of each energy at t = tf . The total energy Etot

decreases from zero. In addition, the timescale for the saturation toward each quasi-
steady value is slightly diminished. Due to such modifications, the semiclassical
result including the ramp-down process agrees very well with the experimental one,
which is presented by points with error bars in Fig. 5.3, without any additional fitting
parameters. The original experimental data are extracted from Ref. [5]. The detailed
experimental setup will be provided in Ref. [5].

We conclude this section bymaking comments on the limitation of our semiclassi-
cal approach to the experimental system at intermediate final interactions and at unit
filling. Although the experiment is able to access a long-time regime t � �/J , our
approach is limited to simulate only short time dynamics up to t ∼ �/J . For the long
time dynamics, the approximate representation, i.e., many realizations of the deter-
ministic Gross–Pitaevskii trajectories that are not affected by quantum jumps, is no
longer valid because higher-order corrections to the TWA become more important.
Developing a quantitative and reliable tool allowing to reach quantum thermalization
after long time evolutions remains to be a challenging issue.
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Fig. 5.3 TWA dynamics of the kinetic and onsite-interaction energies (green-dotted and blue-
solid lines) including the finite-time ramp-down process of the lattice depth. The red-dashed line
represents the total sum of these energies. The initial state is the singly-occupied insulator state. We
set Ntot = M = 303 and λf = 3.41 for this simulation. The horizontal axis starts from t = tf . The
green-square, blue-triangular, and red-circle points represent the corresponding experimental data
of the ensemble-averaged kinetic, onsite-interaction, and total energies. The vertical bar for each
point indicates an experimental error. (This figure is reproduced from Ref. [17]. Copyright c© 2019
American Physical Society. All rights reserved.)

5.4 Correlation Propagation Over a Two-Dimensional
Lattice

The direct comparison performed in Sect. 5.3 corroborated the quantitative validity
of the TWAmethod for the sudden quench dynamics of the weakly-interacting (λ �
λc) 3D system with the Mott-insulator initial state. In this section, we apply our
approach to investigate different quench dynamics, i.e., time evolutions of equal-
time correlation functions after sudden quenches in the 2D Bose–Hubbard model.
In particular, we focus on two different initial states, i.e., a coherent state, which
corresponds to the ground state at λ = 0, and a Mott-insulator state. We study their
difference seen in the quench dynamics inside a weakly interacting regime.

We specifically deal with a density-density correlation function at equal time,
which is defined by

Cd(t) = 1

Mn̄2
∑

j

〈n̂ j (t)n̂ j+d(t)〉c, (5.16)

where d = (dx , dy) is a relative vector between two different sites. The bracket 〈· · · 〉c
indicates a connected correlation function, i.e., 〈n̂ j (t)n̂ j+d(t)〉c = 〈n̂ j (t)n̂ j+d(t)〉 −
〈n̂ j (t)〉〈n̂ j+d(t)〉. Within TWA, the connected correlator is approximated to
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〈n̂ j (t)n̂ j+d(t)〉c ≈ n( j)
W (t)n( j+d)

W (t) − n( j)
W (t) · n( j+d)

W (t), (5.17)

where the overline in the right-hand side means the phase-space average by means
of the Wigner function of either coherent state or insulator state. The averaged c-
number quantity n( j)

W represents the Wigner–Weyl transform of the local density n̂ j ,
i.e., n( j)

W = |α j |2 − 1
2 . In cold-atomic experiments, non-equilibrium dynamics of the

non-local density-density correlation are measurable by utilizing the quantum-gas
microscope technique [18] or measuring spatial-noise correlations in a time-of-flight
interference pattern of expanding gases [19, 20].

5.4.1 Quench from a Coherent State

Let us start from analyzing correlation spreading assuming that the system is initially

in a direct-product state composed of the local coherent states |ᾱ〉 j = eᾱâ†j−ᾱ∗â j |0〉:

|	ini〉 =
∏

j

|ᾱ〉 j . (5.18)

Here, ᾱ = √
n̄ei ϕ̄ parametrizes each coherent-state vector. According to the results

in Chap. 3, the corresponding Wigner function is given by

Wcoh(α,α∗) =
∏

j

{
2e−2|α j−ᾱ|2

}
. (5.19)

This distribution is always positive reflecting the classicality of the coherent state.
Therefore, for this initial state, there is no difficulty in the Monte-Carlo sampling of
the random initial states. In what follows, we set ϕ̄ = 0 for simplicity.

We note here some details of our numerical setup. As the filling factor of thewhole
system, we specifically choose n̄ = 10. This means that the semiclassical dynamics
is accurate for a relatively long time scalewith units of �/J = 1. The lattice geometry
is square with M = 202 sites and its boundary is periodic. The quench is supposed
to be abruptly done, so that the Hamiltonian is independent of time.

Before proceeding to our main results, we calculate the energy deviation per site
defined by

1

M
�E = 1

M

[
〈	ini|Ĥf |	ini〉 − 〈Ĥf〉g

]
, (5.20)

where Ĥf is the post-quenchHamiltonian at λ = λf and 〈Ĥf〉g means the ground-state
energy of Ĥf . This is nothing but the excitation energy density measured from the
ground state in the post-quenched Hamiltonian side. One can evaluate 〈Ĥf〉g within



5.4 Correlation Propagation Over a Two-Dimensional Lattice 93

Fig. 5.4 Energy deviation per site between the coherent state and the ground state of the post-
quench Hamiltonian within the Bogoliubov approximation. �E/(MJ ) is given as a function of λf ,
where n̄ = 10. (This figure is reproduced from Ref. [17]. Copyright c© 2019 American Physical
Society. All rights reserved.)

the standard Bogoliubov approximation for the Bose–Hubbard model and the results
is given as follows:

〈Ĥf〉g ≈ M

⎡

⎣E0 + 1

2M

∑

p �=0

(Ep − �ωp)

⎤

⎦ , (5.21)

wherep = (px , py) is amomentum in the first Brillouin zone,E0 = −4J n̄ +Un̄2/2,
and�ωp = Un̄ + 4J

∑
j=x,y sin

2[p jdlat/(2�)]. In addition, Ep = √
(�ωp)2 − (n̄U )2

is the energy of the elementary excitations (for more details, see Ref. [21]). Figure5.4
shows �E/(MJ ) of the coherent state as a function of λf . Because �E/M is lesser
than the typical energy scale J over a wide range of λf , the dynamics after the quench
from the coherent state is dominated by the low-energy elementary excitations kicked
from the ground state. These are referred to as the Bogoliubov quasiparticle in non-
relativistic broken-symmetry phases.

Figure5.5 monitors how density-density correlations propagate over the square
lattice. In the numerical simulation, we set λf = 2. To characterize the correla-
tion spreading, we introduce the standard Euclidean distance defined by dE ≡
(d2

x + d2
y )

1/2 as a metric of the geometry, rather than the Manhattan distance. The
time evolution indicates that a characteristic signal of correlation, i.e., a wave packet
envelopingmaximum (blue circle) andminimum (green square) peaks of a fine oscil-
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Fig. 5.5 TWA simulation of the density-density correlation function after the quench
from the coherent state at λf = 2. The blue circle and green square indicate the maxi-
mum and minimum values of the correlation function within t J/� ≤ 3. The relative vec-
tor d = (dx , dy), Euclidean distance dE, and offset of correlation �d take values of
(dx , dy; dE; �d ) = (0, 1; 1.00; 0), (1, 1; 1.41; 1), (0, 2; 2.00; 2), (1, 2; 2.24; 3), (2, 2; 2.83; 4),
(0, 3; 3.00; 5), (1, 3; 3.16; 6), (2, 3; 3.617), (0, 4; 4.00; 8) from the bottom to top, respectively. In
this simulation, we sampled nmc = 40 000 initial conditions according to Eq. (5.19). (This figure
is reproduced from Ref. [17]. Copyright c© 2019 American Physical Society. All rights reserved.)

lation propagates over the 2D lattice in time. Such a fine oscillation can be interpreted
as a quasi-coherent oscillation reflecting that a few elementary excitations are created
by the quench.

To quantify and characterize the correlation spreading in the square lattice, we
define a propagation velocity of the wave packet as follows: Let us focus on peak
times of the maximum and minimum values of the correlation. We express them as
t+ and t−, which are the blue circles and the green squares in Fig. 5.5. For a given
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Fig. 5.6 Maximum (left column), minimum (center column) and averaged (right column) peak
times extracted from the numerical simulations. The vertical and horizontal axes express the peak
time and Euclidean distance. The upper and lower rows correspond to λf = 2 and λf = 4, respec-
tively. (This figure is reproduced from Ref. [17]. Copyright c© 2019 American Physical Society.
All rights reserved.)

Euclidean distance dE, a reasonable (instantaneous) propagation velocity vp would
be a harmonic average of these peak times such that

vp ≡ dE
2

(
1

t+
+ 1

t−

)
, (5.22)

where dE/vp is regarded as an averaged peak time. Figure5.6 displays t+, t−, and
dE/vp for different distances at λf = 2 and λf = 4, respectively.We find the tendency
that the averaged peak time almost linearly increases with dE. Performing a linear
fitting of the averaged peak times, one can obtain a mean propagation velocity,
denoted by v̄p, of the wave packet. For computing v̄p, we have taken into account
early twelve peaks within t ∼ �/J , which correspond to Cd(t) with dE < 5dlat .

In Fig. 5.7, we show the mean propagation velocity v̄p as a function of the final
interaction λf as well as twice the maximum and sound velocities of the Bogoliubov
excitations, 2vm and 2vs, which are defined by

vm = max
p

⎧
⎨

⎩

√(
∂Ep

∂px

)2

+
(

∂Ep

∂py

)2
⎫
⎬

⎭ , vs = lim
p→0

⎧
⎨

⎩

√(
∂Ep

∂px

)2

+
(

∂Ep

∂py

)2
⎫
⎬

⎭ .
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Fig. 5.7 Final interaction
(λf ) dependence of the mean
propagation velocity v̄p
(circle). The solid and
dashed lines represent twice
the sound (2vs) and
maximum (2vm) velocities of
the Bogoliubov excitation,
respectively. The vertical bar
indicates the normal
estimation error of the mean
propagation velocity in the
linear fitting (see also
Fig. 5.6). (This figure is
reproduced from Ref. [17].
Copyright c© 2019 American
Physical Society. All rights
reserved.)

We note that vm coincides with vs in the deep quench limit, i.e., λf � 1. It is clearly
seen in Fig. 5.7 that the mean velocity v̄p is bounded by twice the maximum velocity
2vm over a range of λf ∈ [1, 5]. This result is consistent with the general statement
of the Lieb–Robinson bound for interacting lattice models [22]. Furthermore, in
the relatively shallow quench regime 1 ≤ λf ≤ 3, the propagation velocity increases
with λf in such a way that the points come close to 2vs. This feature can be attributed
to the fact that the sudden quench actually generates some elementary excitations at
Ep � J ,where theBogoliubov excitations behave as phonons, because the excitation
energy density is relatively small (see Fig. 5.4).

In contrast, in the range of 3 < λf ≤ 5, themean propagation velocity significantly
deviates from the lower side blanch 2vs. There, Bogoliubov excitations with Ep ∼ J
can be generated because the energy deviation per particle is comparable to J as
seen in Fig. 5.4. In addition, one can see that the computed propagation velocity has
a large estimation error of the linear fitting. Such a large error is actually due to
the presence of some exceptional points in, e.g., Cd(t) at dE = 3 and λf = 4 (see
Fig. 5.6) that the maximum peak happens after the growth of the minimum one. We
note that similar points also appear at λf = 5.

We conclude this part with comments on a previous study by Carleo and his
coworkers [23]. They investigated similar quench dynamics of the density-density
correlation function in the 2D Bose–Hubbard model by using a time-dependent vari-
ational Monte-Carlo approach. The numerical time evolution happens in a weakly-
interacting regime starting from a unit-filling superfluid ground state, which was
prepared within a variational wave function ansatz [23]. Figure 2(b) of Ref. [23]
implies an unphysical result that the propagation velocity is much greater than twice
the maximum one of the elementary excitation in the regime. While it seems to
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contradict the Lieb–Robinson bound, the crucial reason of such a fast propagation
has not been mentioned in their paper. To characterize the wavefront motion of the
correlation on the square lattice, in Ref. [23], the propagation velocity was defined
with units of the Manhattan distance dM ≡ |dx | + |dy| [23, 24], which is a charac-
teristic distance scale in a higher-dimensional lattice than one dimension. It is worth
emphasizing that if we redefine v̄p by using the Manhattan distance instead of the
Euclidean one in our TWA results, it leads to a similar fast propagation as in Ref. [23].
Hence, we argue that the fast propagation beyond twice the maximum velocity seen
in Ref. [23] is actually due to the unsuitable choice of the propagation distance in
the 2D geometry.

5.4.2 Quench from a Mott Insulator State

Thus far we have focused on the quench dynamics with the coherent state initial
condition. Below we study a sudden quench from aMott-insulator state with n̄ = 10
across the ground state phase transition point and keep track of the resulting dynamics
of the density-density correlation function. As well as the previous case, we assume
that the dynamics evolves inside a weakly interacting regime after the quench. We
note that the initial quantum state corresponds to the ground state of the system at
λ = ∞.

Figure5.8 shows the semiclassical dynamics of the density-density correlation
after the quench from the Mott-insulator state at λf = 2. To do the Monte-Carlo
sampling efficiently, we have utilized the approximate Gaussian Wigner function
(5.14) instead of using the exact one. In contrast to the coherent state case, it is
observed that a wave packet propagates over the 2D lattice as a single-peak signal
with no fine oscillation. For such a wave packet, one can define its velocity by
extracting the activation time of the minimum peak from the correlation function. In
Fig. 5.9, we display the peak times obtained from the correlation signals at λf = 2
and λf = 4, respectively. Figure5.10 shows the propagation velocity v̄p extracted
from Fig. 5.9 as a function of λf . There, we also compare this velocity with the one
for the coherent state. This result reveals that v̄p is approximately independent of
λf in contrast to the coherent-state case, where the corresponding velocity clearly
depends on λf .

The physical reason why two cases exhibit such a qualitative difference can be
explained as follows: As seen in Fig. 5.11, theMott insulator initial state corresponds
to much larger excitation energy density than that of the coherent state. This means
that the Bogoliubov excitations, which are elementary excitations of the system in the
presence of condensates, are no longer relevant to such high-energy dynamics. The
sudden quench considered here creates many single-particle excitations with various
momenta relative to the initial density configuration in the insulator state. Therefore,
the absence of the fine oscillation can be regarded as reflecting an incoherent motion
joined by many single-particle excitations. This kind of single-particle picture is also
helpful in explaining the nearly constant velocity of the correlation spreading. As we
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Fig. 5.8 TWAsimulation of the density-density correlation function after the quench from theMott-
insulator state at λf = 2. The green square indicates the minimum peak of the correlation signal.
The relative vector d = (dx , dy), Euclidean distance dE, and offset of correlation �d take values
of (dx , dy; dE; �d ) = (0, 1; 1.00; 0), (1, 1; 1.41; 1), (0, 2; 2.00; 2), (1, 2; 2.24; 3), (2, 2; 2.83; 4),
(0, 3; 3.00; 5), (1, 3; 3.16; 6), (2, 3; 3.617), (0, 4; 4.00; 8) from the bottom to top, respectively. In
this simulation, we sampled nmc = 10 000 initial conditions according to Eq. (5.14). (This figure
is reproduced from Ref. [17]. Copyright c© 2019 American Physical Society. All rights reserved.)

will see below, the Hartree–Fock approximation (HFA) for the lattice bosons leads to
a constant group velocity of the elementary excitation because the interaction effect
is incorporated as a constant shift to the non-interacting energy band [25].

In order to verify the property of the spreading velocity in practice, we apply the
HFA to the Bose–Hubbard model. Let us consider one- and two-particle Green’s
functions for the lattice boson,
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Fig. 5.9 Extracted peak times from the correlation signals at (a) λf = 2 and (b) λf = 4 quenched
from the insulator state. The vertical and horizontal axes indicate the peak time and Euclidean
distance, respectively. (This figure is reproduced from Ref. [17]. Copyright c© 2019 American
Physical Society. All rights reserved.)

Fig. 5.10 λf dependence of
the mean propagation
velocity v̄p (red circle). The
blue square represents the
result of the case of the
coherent state shown in
Fig. 5.6. The vertical bar
indicates the normal
estimation error of the linear
fitting of the peak times.
(This figure is reproduced
from Ref. [17]. Copyright
c© 2019 American Physical
Society. All rights reserved.)

G j, j ′(t, t
′) = 1

i

〈
T
{
â j (t)â

†
j ′(t

′)
}〉

,

G(2)
j1, j2, j ′1, j ′2

(t1, t2, t
′
1, t

′
2) = 1

i2

〈
T
{
â j1(t1)â j2(t2)â

†
j ′2
(t ′2)â

†
j ′1
(t ′1)

}〉
,
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Fig. 5.11 Excitation energy density �E/(MJ ) for the insulator initial state, measured from the
ground state of the post-quench Hamiltonian (red-dashed line). The blue-solid line (same as the one
in Fig. 5.4) represents the energy deviation when the initial state is prepared in the coherent state.
This comparison indicates that the insulator state corresponds to a high-energy state relative to the
ground state of the quenched system (This figure is reproduced from Ref. [17]. Copyright c© 2019
American Physical Society. All rights reserved.)

where T {· · · } indicates a chronological-time ordering for operator products inside
the bracket. In what follows, we deal with the 1D case for simplicity. From the
Heisenberg equation for â j (t), G j, j ′(t, t ′) obeys the following equation of motion:

i�
∂

∂t
G j, j ′(t, t

′) + JG j+1, j ′(t, t
′) + JG j−1, j ′(t, t

′)

− iU G(2)
j, j, j ′, j (t, t1, t

′, t1 + δ)

∣∣∣
t1=t

= �δ(t − t ′)δ j, j ′ , (5.23)

where δ is a positive and infinitesimal shift. In the HFA treatment, G(2)
j, j, j ′, j (t, t1, t

′,
t1 + δ) is factorized into two parts as follows [26]:

G(2)
j, j, j ′, j (t, t1, t

′, t1 + δ) = G j, j ′(t, t
′)G j, j (t1, t1 + δ) + G j, j (t, t1 + δ)G j, j ′(t1, t

′).
(5.24)

This simplification can be regarded as a mean-field approximation, where any corre-
lations between two indistinguishable bosons are neglected [26]. At t1 = t , we find
that

G j, j (t, t1 + δ) = G j, j (t1, t1 + δ) = −i〈n̂ j (t)〉 = −i n̄. (5.25)

Thus, Eq. (5.23) results in a closed equation with respect to G j, j ′(t, t ′):
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{
i�

∂

∂t
− 2Un̄

}
G j, j ′(t, t

′) + JG j+1, j ′(t, t
′) + JG j−1, j ′(t, t

′) = �δ(t − t ′)δ j, j ′ .

(5.26)

Equation (5.26) means a constant shift of the pole of the one-particle Green function
as

εfree(p) → εfree(p) + 2Un̄, (5.27)

where εfree(p) = −2Jcos(pdlat/�) is the single-particle dispersion at the non-
interacting case U = 0. This result says that the interaction does not change the
group velocity of the single-particle excitation within the HFA. Notice that this
result is also valid for the 2D case because the dimensionality enters only into the
free dispersion.

5.5 Summary of This Chapter

In conclusion of this chapter, we studied far-from-equilibrium dynamics of the 2D
and 3DBose–Hubbardmodels after a sudden quantumquench to aweakly interacting
regime. We applied the semiclassical TWA method to analyze the experimentally-
measured redistribution dynamics of the 3D system after a quench from the singly-
occupied Mott insulator state. It was demonstrated that our semiclassical simulation
agrees very well with the experimental result without any free parameter.

We also studied the density-density correlation spreading in the square lattice after
a sudden quench at a large filling factor. We numerically demonstrated that when
the system is initially prepared in the coherent product state, the mean propagation
velocity of the wave packet in the correlation function clearly depends on the final
interaction strength of the quench. Physically, this dependence can be understood
as reflecting the properties of the low-energy elementary excitation in the weakly
interacting regime. In contrast, it was found that when the initial state is the Mott
insulator state, the mean propagation velocity is almost independent of the final
interaction because of the property of the high-energy single-particle excitations,
which are effectively described by the HFA for lattice bosons.

References

1. M. Lewenstein, A. Sanpera, V. Ahufinger, Ultracold Atoms in Optical Lattices: Simulating
Quantum Many-Body Systems (Oxford University Press, Oxford, 2012)

2. A. Polkovnikov, Ann. Phys. 325, 1790 (2010)
3. A. Polkovnikov, S. Sachdev, S.M. Girvin, Phys. Rev. A 66, 053607 (2002)
4. A. Polkovnikov, Phys. Rev. A 68, 033609 (2003)



102 5 Semiclassical Quench Dynamics of Bose Gases …

5. Y. Takasu, T. Yagami, H. Asaka, Y. Fukushima, K. Nagao, S. Goto, I. Danshita, and Y. Taka-
hashi, arXiv:2002.12025 [cond-mat.quant-gas]

6. T.D. Kühner, S.R. White, H. Monien, Phys. Rev. B 61, 12474 (2000)
7. B. Capogrosso-Sansone, N.V. Prokof’ev, B.V. Svistunov, Phys. Rev. B 75, 134302 (2007)
8. C.W. Gardiner, J.R. Anglin, T.I.A. Fudge, J. Phys. B: At. Mol. Opt. Phys. 35, 1555 (2002)
9. M.K. Olsen, A.S. Bradley, S.B. Cavalcanti, Phys. Rev. A 70, 033611 (2004)
10. P.B. Blakie, A.S. Bradley, M.J. Davis, R.J. Ballagh, C.W. Gardiner, Adv. Phys. 57, 363 (2008)
11. S.M. Davidson, D. Sels, A. Polkovnikov, Ann. Phys. 384, 128 (2017)
12. J. Wurtz, A. Polkovnikov, D. Sels, Ann. Phys. 395, 341 (2018)
13. I.S. Landea, N. Nessi, Phys. Rev. A 91, 063601 (2015)
14. S.M. Davidson, A. Polkovnikov, Phys. Rev. Lett. 114, 045701 (2015)
15. W.K. Wootters, Ann. Phys. 176, 1 (1987)
16. J. Schachenmayer, A. Pikovski, A.M. Rey, Phys. Rev. X 5, 011022 (2015)
17. K. Nagao, M. Kunimi, Y. Takasu, Y. Takahashi, I. Danshita, Phys. Rev. A 99, 023622 (2019)
18. M. Cheneau, P. Barmettler, D. Poletti, M. Endres, P. Schauß, T. Fukuhara, C. Gross, I. Bloch,

C. Kollath, S. Kuhr, Nature 481, 484 (2012)
19. E. Altman, E. Demler, M.D. Lukin, Phys. Rev. A 70, 013603 (2004)
20. S. Fölling, F. Gerbier, A. Widera, O. Mandel, T. Gericke, I. Bloch, Nature 434, 481 (2005)
21. I. Danshita, P. Naidon, Phys. Rev. A 79, 043601 (2009)
22. E.H. Lieb, D.W. Robinson, Commun. Math. Phys. 28, 251 (1972)
23. G. Carleo, F. Becca, L. Sanchez-Palencia, S. Sorella, M. Fabrizio, Phys. Rev. A 89, 031602(R)

(2014)
24. E.F. Krause, Taxicab Geometry (Courier Dover Publications, New York, 1986)
25. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University

Press, Cambridge, UK, 2008)
26. L.P. Kadanoff, G. Baym, Quantum Statistical Mechanics (Benjamin, New York, 1962)

http://arxiv.org/abs/2002.12025


Chapter 6
Conclusions and Outlooks

Abstract In this chapter, we summarize the main results of this Thesis presented in
Chaps. 4 and 5 and conclude this Thesis. We also show outlooks for future works.

In this Thesis, we have focused on near- and far-from-equilibrium dynamics of ultra-
coldBose atoms in optical lattices.Wehaveworked especially on theoretical analyses
of several non-equilibrium quantum many-body problems motivated by experimen-
tal works using approaches in which effects of fluctuations are taken into account
beyond the naive mean-field treatments. Hence, this Thesis offers an important step
towards deeper understanding of quantum many-body phenomena realized in real
experiments of ultracold atoms.

In Chap. 4, we studied the Higgs mode of strongly-interacting superfluid Bose
gases in the three-dimensional (3D) cubic optical lattice, especially, its stability and
detectability in the experimental systems. To excite the Higgs mode in the optical lat-
tice, we have discussed two experimentally feasible protocols, i.e., the kinetic energy
and onsite interaction modulations and formulated the corresponding response func-
tions using the linear-response theory. We used the effective-model representation of
the strongly-interacting Bose–Hubbard model and calculated the response functions
combining it with the finite-temperature Green’s function theory. Our perturbative
calculations provided quantum and thermal fluctuation corrections to the spectral
properties of the Higgs mode. We showed that if the system is uniform, the Higgs
mode is then sufficiently robust and can exist as a well-defined resonance peak even
at typical temperatures of experiments. This should be contrasted with the two-
dimensional case, in which the corresponding resonance becomes rather broad due
to the fluctuations. Furthermore, we have analyzed the non-uniform trap effect on the
uniform response functions at unit filling on the basis of the local-density approx-
imation. We demonstrated that the resonance peak is significantly broadened due
to the trapping potential when the modulations are applied globally to the entire
system. In order to extract a sharp resonance peak from the smeared response, we
discussed partial modulations around the trap center. The results with a modulation
radius Rmod < 0.5RTF showed that a well-defined resonance peak of the Higgs mode
can survive at typical temperatures.
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One of the promising directions associated with the stability of the Higgs mode
is to analyze the same response functions for the 3D Bose–Hubbard model by per-
forming quantum Monte-Carlo (QMC) simulations. Recently, a spectral function
characterizing the response of the Higgs mode has been calculated using a QMC
technique for a 3D quantum antiferromagnet [1], which has a quantum critical point
described by the relativistic O(3) scalar model. The results of Ref. [1] have exhib-
ited that there appears a sufficiently sharp resonance peak of the Higgs mode in the
spectral function. It seems to be an intriguing problem that one applies the same
numerical technique to the 3D Bose–Hubbard model with a non-uniform potential,
and validates our qualitative results through comparing them with more quantitative
ones obtained from QMC simulations. Furthermore, it is also interesting to employ
the functional (or non-perturbative) renormalization group approach for computing
the response functions for the 3D Bose–Hubbard model [2–5].

In Chap. 5, we have investigated far-from-equilibrium dynamics after a sud-
den quantum quench in Bose gases trapped by optical lattices. First, applying the
truncated-Wigner approximation (TWA), we analyzed the redistribution dynamics of
the kinetic and interaction energies of the 3D Bose–Hubbard model after a quantum
quench from a singly-occupied Mott-insulator state. Through a direct comparison
with the experimental data, it was reported that our semiclassical results capture the
characteristic behavior of redistribution and remarkably agree with the data with no
fitting parameter. Furthermore, we also studied the spreading of the density-density
correlation over space in the two-dimensional (2D) Bose–Hubbard model at a large
filling factor. We focused especially on the initial state dependence of the spread-
ing dynamics. We numerically showed that when the system is initially prepared
in the coherent state, then the propagation velocity of the correlation wave packet
strongly depends on the final interaction strength. We discussed that this feature can
be understood from the properties of the low-energy elementary excitation in the
weakly-interacting regime. In contrast, we demonstrated that when the initial quan-
tum state is the Mott insulator state, then the propagation velocity of correlations is
almost independent of the final interaction.We also provided a physical interpretation
to such a result in terms of the property of the high-energy single-particle excitations,
whose spectrum was explicitly obtained from the Hartree–Fock approximation.

The experiment of the quantum optics group at Kyoto University has also studied
correlation-spreading dynamics in a 2D strongly-interacting Bose-gas system [6].
However, our semiclassical scheme presented in this Thesis would not capture such
dynamics accurately because the quantum-to-classical correspondence of dynamics
bymeans of theGross–Pitaevskii equation and coherent state phase space is no longer
valid in the strongly-correlated parameter regime. Recently, a promising approach
to strongly-interacting dynamics has been proposed by Davidson and Polkovnikov,
and it has been referred to as the SU(3) truncated-Wigner approximation [7]. This
technique, which is applicable to quantum spin-1 or three-level systems with local
interactions, increases phase-space variables of the classical limit in order to linearize
the local interaction in the phase-space variables. Applying the SU(3)TWA, we can
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simulate thewave-packet motion observed in themeasured correlation functionmore
accurately [8]. A similar increased-phase-space technique can also be developed for
more complicated cases of interacting fermions, and it successfully improves far-
from-equilibrium dynamics in the strongly-correlated regime [9]. These results will
be presented by publications sometime in the future (not included in this Thesis).
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Appendix A
Energy Absorption Due to the
Onsite-Interaction Strength Modulations

In this appendix, we derive the relation between the response function (4.4) and
energy absorbed by the system for a finite-time period of the onsite-interaction
strength modulation. The similar discussion has been performed for the case of
hopping modulations. For more details, see, e.g., Endres’s doctoral thesis cited in
Chap. 4

As seen in Sect. 4.1.2, the time-dependent perturbed Hamiltonian HBH(t) =
HBH + �U (t)O describes the system that is initially in a thermal equilibrium
state and is driven by the small and periodic modulation U → [1 + �U (t)]U =
[1 + δUcos(ωt)]U at a fixed ω. If we assume that ρ(t) is the total density operator at
t , which approaches the equilibrium one ρeq as t → −∞, then the total energy of the
system at t is given by E(t) = 〈HBH(t)〉(t) = Tr[ρ(t)HBH(t)]. We can verify easily
that its instantaneous change rate dE(t)/dt is proportional to only the instantaneous
average of O with an oscillation factor:

dE

dt
= �̇U (t)〈O〉(t)
= −ωδU sin(ωt)〈O〉(t). (A.1)

Following the linear response theory, the response of O to the U modulation,
which is defined by �〈O〉(t) ≡ 〈O〉(t) − 〈O〉eq, is related to �U (t) such that

�〈O〉(t) =
∫ t

−∞
DR

OO(t − t ′)�U (t ′), (A.2)

where DR
OO(t − t ′) is the response function given by Eq. (4.4). Substituting�U (t) =

δUcos(ωt) into this Eq. (A.2), we have

�〈O〉(t) = δURe
{
eiωtχ∗

OO(ω)
}

= δU {cos(ωt)ReχOO(ω) + sin(ωt)ImχOO(ω)} . (A.3)

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Singapore Pte Ltd. 2020
K. Nagao, Fluctuations and Non-Equilibrium Phenomena in Strongly-Correlated
Ultracold Atoms, Springer Theses, https://doi.org/10.1007/978-981-15-7171-8

107

https://doi.org/10.1007/978-981-15-7171-8


108 Appendix A: Energy Absorption Due to the Onsite-Interaction Strength Modulations

Averaging Eq. (A.1) over one period tmod = 2π/ω and using Eq. (A.3), we finally
obtain the mean energy absorbed by the system for a period of tmod

�E(ω) = 1

tmod

∫ tmod

0
dt

dE

dt
= (δO)2

2
ωSOO(ω), (A.4)

where SOO(ω) = −ImχOO(ω) is the spectral function. One can measure �E(ω)

accurately by using the quantum-gas microscope technique. The relation (A.4)
reveals that for the modulations of U , the experimental observable �E(ω) is char-
acterized only by the O-to-O response function DR

OO(t − t ′).



Appendix B
Coefficients in the Effective Model

Here we present the coefficients characterizing each part of the spin-wave Hamilto-
nian, i.e.,H (l)

eff for l = 0, 1, 2, 3, 4. To simplify our discussion, let us define a bi-linear
representation of the pseudospin operators as follows:

S+
i = t†i T1ti , S−

i = t†i T2ti , Szi = t†i T3ti ,

(Szi )
2 = t†i T4ti , Szi S

+
i = t†i T5ti , S−

i S
z
i = t†i T6ti , (B.1)

where ti = (t1,i , t0,i , t−1,i )
T. We have introduced matrices T1, T2, . . . , T6 defined by

T1 =
⎛
⎝0

√
2 0

0 0
√
2

0 0 0

⎞
⎠ , T2 =

⎛
⎝ 0 0 0√

2 0 0
0

√
2 0

⎞
⎠ , T3 =

⎛
⎝1 0 0
0 0 0
0 0 −1

⎞
⎠ ,

T4 =
⎛
⎝1 0 0
0 0 0
0 0 1

⎞
⎠ , T5 =

⎛
⎝0

√
2 0

0 0 0
0 0 0

⎞
⎠ , T6 =

⎛
⎝ 0 0 0√

2 0 0
0 0 0

⎞
⎠ . (B.2)

This representation is related to the fact that arbitrary local operators acting on a
locally three-level Hilbert space can be expressed as a linear combination of 3 × 3
basic matrices of the SU(3) Lie algebra, such as the Gell-Mann matrices.

The canonical transformation (2.55) can be regarded as the linear transformation
from the old basis ti to the new one bi = (b1,i , b0,i , b2,i )T. After the transformation,
the elements of the matrices in the new basis are given by

T̃1 =
⎛
⎝−√

2s1c1(s2 + c2)
√
2(s12c2 − c12s2) −√

2s1s2√
2(s12s2 − c12c2)

√
2s1c1(s2 + c2) −√

2c1s2√
2s1c2

√
2c1c2 0

⎞
⎠ , (B.3)
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T̃2 =
⎛
⎝−√

2s1c1(s2 + c2)
√
2(s12s2 − c12c2)

√
2s1c2√

2(s12c2 − c12s2)
√
2s1c1(s2 + c2)

√
2c1c2

−√
2s1s2 −√

2c1s2 0

⎞
⎠ , (B.4)

T̃3 =
⎛
⎝ c12(s22 − c22) s1c1(c22 − s22) −2c1s2c2
s1c1(c22 − s22) s12(s22 − c22) 2s1s2c2

−2c1s2c2 2s1s2c2 c22 − s22

⎞
⎠ , (B.5)

T̃4 =
⎛
⎝ c12 −s1c1 0

−s1c1 s12 0
0 0 1

⎞
⎠ , (B.6)

T̃5 =
⎛
⎝−√

2s1c1s2 −√
2c12s2 0√

2s12s2
√
2s1c1s2 0√

2s1c2
√
2c1c2 0

⎞
⎠ , (B.7)

T̃6 =
⎛
⎝−√

2s1c1s2
√
2s12s2

√
2s1c2

−√
2c12s2

√
2s1c1s2

√
2c1c2

0 0 0

⎞
⎠ . (B.8)

In the following equations, we express the matrix elements of each matrix by

T̃μ =
⎛
⎝(T̃μ)11 (T̃μ)10 (T̃μ)12

(T̃μ)01 (T̃μ)00 (T̃μ)02

(T̃μ)21 (T̃μ)20 (T̃μ)22

⎞
⎠ . (B.9)

Here the index μ runs from μ = 1 to μ = 6.
In terms of the matrix elements, the coefficients inH (0)

eff are given by

A0 = − Jn0z

2
{(T̃1)00 + δν(T̃5)00}2, (B.10)

Ã0 = U

2
(T̃4)00 − B(T̃3)00. (B.11)

The coefficients inH (1)
eff are given by

A1 = − Jn0z

2
{(T̃1)00 + δν(T̃5)00}

[
(T̃1)01 + (T̃1)10 + δν(T̃5)01 + δν(T̃5)10

]
,

(B.12)

B1 = − Jn0z

2
{(T̃1)00 + δν(T̃5)00}

[
(T̃1)02 + (T̃1)20 + δν(T̃5)20

]
, (B.13)

Ã1 = U

2
(T̃4)10 − B(T̃3)10, (B.14)

B̃1 = −B(T̃3)20. (B.15)

The coefficients inH (2)
eff are given by
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A2 = −Jn0z{(T̃1)00 + δν(T̃5)00}{(T̃1)11 + δν(T̃5)11}, (B.16)

B2 = − Jn0z

2

[
{(T̃1)00 + δν(T̃5)00}{(T̃1)21 + δν(T̃5)21}

+(T̃1)12{(T̃1)00 + δν(T̃5)00}
]
, (B.17)

D2 = − Jn0z

2
{(T̃1)10 + δν(T̃5)10}{(T̃1)01 + δν(T̃5)01}, (B.18)

E2 = − Jn0z

2

[
{(T̃1)10 + δν(T̃5)10}2 + {(T̃1)01 + δν(T̃5)01}2

]
, (B.19)

F2 = − Jn0z

2

[
{(T̃1)20 + δν(T̃5)20}{(T̃1)10 + δν(T̃5)10}

+ (T̃1)02{(T̃1)01 + δν(T̃5)01}
]
, (B.20)

G2 = − Jn0z

2

[
{(T̃1)20 + δν(T̃5)20}{(T̃1)01 + δν(T̃5)01}

+ (T̃1)02{(T̃1)10 + δν(T̃5)10}
]
, (B.21)

H2 = − Jn0z

2
(T̃1)02{(T̃1)20 + δν(T̃5)20}, (B.22)

I2 = − Jn0z

2

[
{(T̃1)20 + δν(T̃5)20}2 + (T̃1)

2
02

]
, (B.23)

Ã2 = U

2
(T̃4)11 − B(T̃3)11, (B.24)

B̃2 = −B(T̃3)12, (B.25)

C̃2 = U

2
(T̃4)22 − B(T̃3)22. (B.26)

The coefficients inH (3)
eff are given by

A3 = − Jn0z

2
{(T̃1)11 + δν(T̃5)11}{(T̃1)10 + (T̃1)01 + δν(T̃5)10 + δν(T̃5)01},

(B.27)

B3 = − Jn0z

2
{(T̃1)11 + δν(T̃5)11}{(T̃1)20 + (T̃1)02 + δν(T̃5)20}, (B.28)

C3 = − Jn0z

2

[
{(T̃1)10 + δν(T̃5)10)(T̃1)12

+{(T̃1)21 + δν(T̃5)21}{(T̃1)01 + δν(T̃5)01}
]
,

(B.29)

D3 = − Jn0z

2

[
{(T̃1)10 + δν(T̃5)10}{(T̃1)21 + δν(T̃5)21}

+{T̃1)12((T̃1)01 + δν(T̃5)01}
]
, (B.30)
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E3 = − Jn0z

2

[
{(T̃1)21 + δν(T̃5)21}{(T̃1)20 + δν(T̃5)20} + (T̃1)02(T̃1)12

]
, (B.31)

F3 = − Jn0z

2

[
(T̃1)02{(T̃1)21 + δν(T̃5)21} + (T̃1)12{(T̃1)20 + δν(T̃5)20}

]
, (B.32)

Finally, the coefficients inH (4)
eff are given by

A4 = − Jn0z

2
{(T̃1)11 + δν(T̃5)11}2, (B.33)

B4 = − Jn0z

2
(T̃1)12{(T̃1)21 + δν(T̃5)21}, (B.34)

C4 = − Jn0z

2
{(T̃1)11 + δν(T̃5)11}

[
(T̃1)12 + (T̃1)21 + δν(T̃5)21

]
, (B.35)

D4 = − Jn0z

2

[
{(T̃1)21 + δν(T̃5)21}2 + (T̃1)

2
12

]
. (B.36)
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